論文の概要: Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving
- arxiv url: http://arxiv.org/abs/2503.18108v1
- Date: Sun, 23 Mar 2025 15:27:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:10.940681
- Title: Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving
- Title(参考訳): エンドツーエンド自動運転における合成データの影響の解明
- Authors: Junhao Ge, Zuhong Liu, Longteng Fan, Yifan Jiang, Jiaqi Su, Yiming Li, Zhejun Zhang, Siheng Chen,
- Abstract要約: SceneCrafterは3Dガウススプレイティングに基づくリアルでインタラクティブで効率的な自動運転シミュレータである(3DGS)。
SceneCrafterは、さまざまなトラフィックシナリオにわたる現実的な運転ログを効率的に生成する。
また、エンドツーエンドモデルの堅牢なクローズドループ評価を可能にする。
- 参考スコア(独自算出の注目度): 35.49042205415498
- License:
- Abstract: End-to-end (E2E) autonomous driving (AD) models require diverse, high-quality data to perform well across various driving scenarios. However, collecting large-scale real-world data is expensive and time-consuming, making high-fidelity synthetic data essential for enhancing data diversity and model robustness. Existing driving simulators for synthetic data generation have significant limitations: game-engine-based simulators struggle to produce realistic sensor data, while NeRF-based and diffusion-based methods face efficiency challenges. Additionally, recent simulators designed for closed-loop evaluation provide limited interaction with other vehicles, failing to simulate complex real-world traffic dynamics. To address these issues, we introduce SceneCrafter, a realistic, interactive, and efficient AD simulator based on 3D Gaussian Splatting (3DGS). SceneCrafter not only efficiently generates realistic driving logs across diverse traffic scenarios but also enables robust closed-loop evaluation of end-to-end models. Experimental results demonstrate that SceneCrafter serves as both a reliable evaluation platform and a efficient data generator that significantly improves end-to-end model generalization.
- Abstract(参考訳): エンド・ツー・エンド(E2E)自律運転(AD)モデルは、様々な運転シナリオにまたがって、多種多様な高品質なデータを必要とする。
しかし、大規模な実世界のデータの収集は高価で時間を要するため、データの多様性とモデルロバスト性を高めるために、高忠実な合成データが不可欠である。
ゲームエンジンベースのシミュレータはリアルなセンサーデータを生成するのに苦労し、NeRFベースの拡散ベースの手法は効率上の課題に直面している。
さらに、クローズドループ評価のために設計された最近のシミュレータは、他の車両との限られた相互作用を提供し、複雑な現実世界の交通力学をシミュレートすることができない。
これらの問題に対処するため,現実的でインタラクティブで効率的なADシミュレータであるSceneCrafter(3DGS)を紹介した。
SceneCrafterは、多様なトラフィックシナリオにわたる現実的な運転ログを効率的に生成するだけでなく、エンドツーエンドモデルの堅牢なクローズループ評価を可能にします。
実験により、SceneCrafterは信頼性評価プラットフォームと、エンドツーエンドモデルの一般化を大幅に改善する効率的なデータジェネレータの両方として機能することが示された。
関連論文リスト
- Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
本稿では,実世界の課題に対して,大規模な事前学習モデルを微調整するための一連の優れたプラクティスを統合する。
具体的には,合成データと実運転データとの相違を考慮に入れたいくつかの戦略を開発する。
我々の洞察は、先行芸術よりも新しいビュー合成のためのFIDを68.8%値下げする効果のある微調整につながる。
論文 参考訳(メタデータ) (2024-12-19T03:39:13Z) - DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
本研究では,現実的でクローズドループなシミュレーションフレームワークであるDrivingSphereを提案する。
その中核となる考え方は、4Dの世界表現を構築し、実生活と制御可能な運転シナリオを生成することである。
動的で現実的なシミュレーション環境を提供することで、DrivingSphereは自律運転アルゴリズムの包括的なテストと検証を可能にする。
論文 参考訳(メタデータ) (2024-11-18T03:00:33Z) - CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator [2.8978140690127328]
我々は、シミュレーションデータのフォトリアリズムを高めるために最先端のアプローチを採用し、それらを実世界のデータセットの視覚的特徴と整合させる。
そこで我々はCARLA2Realを開発した。CARLA2Realは、広く使われているオープンソースのCARLAシミュレーターである。
このツールは、CARLAをほぼリアルタイムで出力し、13FPSのフレームレートを実現し、実世界のデータセットの視覚的スタイルとリアリズムに変換する。
論文 参考訳(メタデータ) (2024-10-23T19:33:30Z) - SimGen: Simulator-conditioned Driving Scene Generation [50.03358485083602]
シミュレーション条件付きシーン生成フレームワークSimGenを紹介する。
SimGenは、シミュレータと現実世界のデータを混ぜることで、多様な運転シーンを生成することを学ぶ。
テキストプロンプトとシミュレータからのレイアウトに基づいて制御性を保ちながら、優れた生成品質と多様性を実現する。
論文 参考訳(メタデータ) (2024-06-13T17:58:32Z) - An Approach to Systematic Data Acquisition and Data-Driven Simulation for the Safety Testing of Automated Driving Functions [32.37902846268263]
オープンワールド」の安全性への影響に関連する研究開発分野では、シミュレーションのパラメータ化や検証を行うための実世界のデータが著しく不足している。
本稿では、異種な方法で公共交通のデータを体系的に取得し、それらを統一表現に変換し、自動運転機能のデータ駆動仮想検証に使用する交通行動モデルを自動的にパラメータ化する手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T23:24:27Z) - Exploring Generative AI for Sim2Real in Driving Data Synthesis [6.769182994217369]
ドライビングシミュレータは、対応するアノテーションで様々なドライビングシナリオを自動的に生成するソリューションを提供するが、シミュレーションとリアリティ(Sim2Real)ドメインギャップは依然として課題である。
本稿では,現実的なデータセット作成のためのブリッジとして,運転シミュレータからのセマンティックラベルマップを活用するために,3つの異なる生成AI手法を適用した。
実験の結果,手動のアノテートラベルが提供されると,GANベースの手法は高品質な画像を生成するには適しているが,ControlNetは,シミュレータ生成ラベルを使用すると,より少ないアーティファクトとより構造的忠実度を持つ合成データセットを生成することがわかった。
論文 参考訳(メタデータ) (2024-04-14T01:23:19Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
ARSimは3次元合成オブジェクトを用いた実写多視点画像データの拡張を目的としたフレームワークである。
実データを用いて簡易な仮想シーンを構築し,その内部に戦略的に3D合成資産を配置する。
結果として得られたマルチビュー一貫性のあるデータセットは、自動運転車のためのマルチカメラ知覚ネットワークのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-03-22T17:49:11Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。