論文の概要: Automated Pavement Cracks Detection and Classification Using Deep Learning
- arxiv url: http://arxiv.org/abs/2406.07674v1
- Date: Tue, 11 Jun 2024 19:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:25:46.273807
- Title: Automated Pavement Cracks Detection and Classification Using Deep Learning
- Title(参考訳): ディープラーニングを用いた自動舗装き裂検出と分類
- Authors: Selvia Nafaa, Hafsa Essam, Karim Ashour, Doaa Emad, Rana Mohamed, Mohammed Elhenawy, Huthaifa I. Ashqar, Abdallah A. Hassan, Taqwa I. Alhadidi,
- Abstract要約: 本稿では, 道路舗装の亀裂の検出と分類を, 有名なYou Only Look Once (YOLO) バージョン5 (YOLOv5) とバージョン8 (YOLOv8) のアルゴリズムを用いて行う手法を提案する。
実験結果から, 照明条件と画像サイズが異なる場合, 舗装き裂検出精度は67.3%に達することがわかった。
- 参考スコア(独自算出の注目度): 3.7078234026046877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring asset conditions is a crucial factor in building efficient transportation asset management. Because of substantial advances in image processing, traditional manual classification has been largely replaced by semi-automatic/automatic techniques. As a result, automated asset detection and classification techniques are required. This paper proposes a methodology to detect and classify roadway pavement cracks using the well-known You Only Look Once (YOLO) version five (YOLOv5) and version 8 (YOLOv8) algorithms. Experimental results indicated that the precision of pavement crack detection reaches up to 67.3% under different illumination conditions and image sizes. The findings of this study can assist highway agencies in accurately detecting and classifying asset conditions under different illumination conditions. This will reduce the cost and time that are associated with manual inspection, which can greatly reduce the cost of highway asset maintenance.
- Abstract(参考訳): 効率的な輸送資産管理を構築する上で、資産状況のモニタリングが重要な要素である。
画像処理の進歩により、従来の手動分類はセミオートマチック/オートマチック技術に置き換えられている。
その結果,自動資産検出・分類技術が求められた。
本稿では, 道路舗装の亀裂の検出と分類を, 有名なYou Only Look Once (YOLO) バージョン5 (YOLOv5) とバージョン8 (YOLOv8) のアルゴリズムを用いて行う手法を提案する。
実験結果から, 照明条件と画像サイズが異なる場合, 舗装き裂検出精度は67.3%に達することがわかった。
本研究は,異なる照明条件下での資産状況の正確な検出・分類を支援することを目的としている。
これにより、手動検査に伴うコストと時間を削減し、ハイウェイ資産維持のコストを大幅に削減することができる。
関連論文リスト
- YOLOv8-Based Visual Detection of Road Hazards: Potholes, Sewer Covers,
and Manholes [0.0]
本研究は,道路危険度検出の文脈において,対象物検出モデルであるYOLOv8の総合評価を行う。
従来の YOLOv5 と YOLOv7 の比較分析を行い、様々なアプリケーションにおける計算効率の重要性を強調した。
この研究は、様々なテストシナリオで計算されたmAPスコアを用いて、モデルの堅牢性と一般化能力を評価する。
論文 参考訳(メタデータ) (2023-10-31T18:33:26Z) - RoadScan: A Novel and Robust Transfer Learning Framework for Autonomous
Pothole Detection in Roads [0.0]
本研究では,ディープラーニングと画像処理技術を用いた新しいポットホール検出手法を提案する。
このシステムは、道路利用者に重大なリスクをもたらす道路上の穴の致命的な問題に対処することを目的としている。
論文 参考訳(メタデータ) (2023-08-07T10:47:08Z) - A Comparative Analysis of Machine Learning Methods for Lane Change
Intention Recognition Using Vehicle Trajectory Data [0.0]
車線変更予測は、自動運転車が周囲の環境をよりよく理解し、潜在的な安全リスクを認識し、交通安全を改善するのに役立つ。
本稿では,LCプロセスに着目し,異なる機械学習手法の性能を比較し,高次元時系列データからLC意図を認識する。
LC意図認識では,分類精度の98%で,アンサンブル法はII型,III型の分類誤差の影響を低減している。
論文 参考訳(メタデータ) (2023-07-28T15:32:14Z) - Road Rutting Detection using Deep Learning on Images [0.0]
道路ラッティングは、道路の早期かつコストのかかる保守コストの早期の故障を引き起こす深刻な道路難題である。
本稿では,949個の画像からなる新しい道路ラッティングデータセットを提案し,オブジェクトレベルのアノテーションとピクセルレベルのアノテーションを提供する。
オブジェクト検出モデルとセマンティックセグメンテーションモデルは,提案したデータセット上での道路変動を検出するためにデプロイされた。
論文 参考訳(メタデータ) (2022-09-28T16:53:05Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Automated Approach for Computer Vision-based Vehicle Movement
Classification at Traffic Intersections [7.3496760394236595]
視覚に基づく車両軌跡の移動特定分類のための自動分類法を提案する。
筆者らのフレームワークは、教師なし階層クラスタリング手法を用いて、交通現場で観測された異なる動きパターンを識別する。
新しい類似度尺度は、視覚に基づく軌道の固有の欠点を克服するために設計された。
論文 参考訳(メタデータ) (2021-11-17T15:02:43Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Deep Learning and Traffic Classification: Lessons learned from a
commercial-grade dataset with hundreds of encrypted and zero-day applications [72.02908263225919]
商業用DLトラフィック分類エンジンでの経験を共有します。
暗号化トラフィックから既知のアプリケーションや未知のゼロデイアプリケーションを特定します。
DLモデルに合わせ、最新技術よりも正確で軽量な新しい手法を提案します。
論文 参考訳(メタデータ) (2021-04-07T15:21:22Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Circumventing Outliers of AutoAugment with Knowledge Distillation [102.25991455094832]
AutoAugmentは多くの視覚タスクの精度を向上させる強力なアルゴリズムである。
本論文は作業機構を深く掘り下げ,AutoAugmentがトレーニング画像から識別情報の一部を除去できることを明らかにする。
教師モデルの出力に言及した知識蒸留を用いて,ネットワークトレーニングの指導を行う。
論文 参考訳(メタデータ) (2020-03-25T11:51:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。