Vehicle Speed Detection System Utilizing YOLOv8: Enhancing Road Safety and Traffic Management for Metropolitan Areas
- URL: http://arxiv.org/abs/2406.07710v1
- Date: Tue, 11 Jun 2024 20:45:40 GMT
- Title: Vehicle Speed Detection System Utilizing YOLOv8: Enhancing Road Safety and Traffic Management for Metropolitan Areas
- Authors: SM Shaqib, Alaya Parvin Alo, Shahriar Sultan Ramit, Afraz Ul Haque Rupak, Sadman Sadik Khan, Mr. Md. Sadekur Rahman,
- Abstract summary: Road accidents remain one of the leading causes of death in Bangladesh.
The YOLOv8 model can recognize and track cars in videos with greater speed and accuracy when trained under close supervision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to ensure traffic safety through a reduction in fatalities and accidents, vehicle speed detection is essential. Relentless driving practices are discouraged by the enforcement of speed restrictions, which are made possible by accurate monitoring of vehicle speeds. Road accidents remain one of the leading causes of death in Bangladesh. The Bangladesh Passenger Welfare Association stated in 2023 that 7,902 individuals lost their lives in traffic accidents during the course of the year. Efficient vehicle speed detection is essential to maintaining traffic safety. Reliable speed detection can also help gather important traffic data, which makes it easier to optimize traffic flow and provide safer road infrastructure. The YOLOv8 model can recognize and track cars in videos with greater speed and accuracy when trained under close supervision. By providing insights into the application of supervised learning in object identification for vehicle speed estimation and concentrating on the particular traffic conditions and safety concerns in Bangladesh, this work represents a noteworthy contribution to the area. The MAE was 3.5 and RMSE was 4.22 between the predicted speed of our model and the actual speed or the ground truth measured by the speedometer Promising increased efficiency and wider applicability in a variety of traffic conditions, the suggested solution offers a financially viable substitute for conventional approaches.
Related papers
- Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
We design traffic-smoothing cruise controllers that can be deployed onto autonomous vehicles.
We leverage real-world trajectory data from the I-24 highway in Tennessee.
We show that at a low 4% autonomous vehicle penetration rate, we achieve significant fuel savings of over 15% on trajectories exhibiting many stop-and-go waves.
arXiv Detail & Related papers (2024-01-18T00:50:41Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Deep Reinforcement Learning for the Joint Control of Traffic Light
Signaling and Vehicle Speed Advice [8.506271224735029]
We propose a first attempt to jointly learn the control of both traffic light control and vehicle speed advice.
In our experiments, the joint control approach reduces average vehicle trip delays, w.r.t. controlling only traffic lights, in eight out of eleven benchmark scenarios.
arXiv Detail & Related papers (2023-09-18T15:45:22Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - SafeLight: A Reinforcement Learning Method toward Collision-free Traffic
Signal Control [5.862792724739738]
One-quarter of road accidents in the U.S. happen at intersections due to problematic signal timing.
We propose a safety-enhanced residual reinforcement learning method (SafeLight)
Our method can significantly reduce collisions while increasing traffic mobility.
arXiv Detail & Related papers (2022-11-20T05:09:12Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection [0.3670422696827526]
This paper studies deep representation of loop detector data using Long-Short Term Memory (LSTM) network for automatic detection of freeway accidents.
Experiments on real accident and loop detector data collected from the Twin Cities Metro freeways of Minnesota demonstrate that deep representation of traffic flow data using LSTM network has the potential to detect freeway accidents in less than 18 minutes.
arXiv Detail & Related papers (2021-08-21T13:18:04Z) - Vision-based Vehicle Speed Estimation for ITS: A Survey [0.47248250311484113]
The number of speed cameras installed worldwide has been growing in recent years.
Traffic monitoring and forecasting in road networks plays a fundamental role to enhance traffic, emissions and energy consumption in smart cities.
The use of vision-based systems brings great challenges to be solved, but also great potential advantages.
arXiv Detail & Related papers (2021-01-15T15:07:54Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
We propose a framework to infer traffic violation-prone locations in cities based on the largetemporal-scale vehicle trajectory data and environment data.
To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle trajectories collected from two Chinese cities.
arXiv Detail & Related papers (2020-05-09T08:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.