Enhanced Vehicle Speed Detection Considering Lane Recognition Using Drone Videos in California
- URL: http://arxiv.org/abs/2506.11239v1
- Date: Thu, 12 Jun 2025 19:16:48 GMT
- Title: Enhanced Vehicle Speed Detection Considering Lane Recognition Using Drone Videos in California
- Authors: Amirali Ataee Naeini, Ashkan Teymouri, Ghazaleh Jafarsalehi, Michael Zhang,
- Abstract summary: This study introduces a fine-tuned YOLOv11 model, trained on almost 800 bird's-eye view images, to enhance vehicle speed detection accuracy.<n>The proposed system identifies the lane for each vehicle and classifies vehicles into two categories: cars and heavy vehicles.
- Score: 5.199353370336873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increase in vehicle numbers in California, driven by inadequate transportation systems and sparse speed cameras, necessitates effective vehicle speed detection. Detecting vehicle speeds per lane is critical for monitoring High-Occupancy Vehicle (HOV) lane speeds, distinguishing between cars and heavy vehicles with differing speed limits, and enforcing lane restrictions for heavy vehicles. While prior works utilized YOLO (You Only Look Once) for vehicle speed detection, they often lacked accuracy, failed to identify vehicle lanes, and offered limited or less practical classification categories. This study introduces a fine-tuned YOLOv11 model, trained on almost 800 bird's-eye view images, to enhance vehicle speed detection accuracy which is much higher compare to the previous works. The proposed system identifies the lane for each vehicle and classifies vehicles into two categories: cars and heavy vehicles. Designed to meet the specific requirements of traffic monitoring and regulation, the model also evaluates the effects of factors such as drone height, distance of Region of Interest (ROI), and vehicle speed on detection accuracy and speed measurement. Drone footage collected from Northern California was used to assess the proposed system. The fine-tuned YOLOv11 achieved its best performance with a mean absolute error (MAE) of 0.97 mph and mean squared error (MSE) of 0.94 $\text{mph}^2$, demonstrating its efficacy in addressing challenges in vehicle speed detection and classification.
Related papers
- Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
We focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group.<n>We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM)<n>Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle.
arXiv Detail & Related papers (2025-07-01T09:20:41Z) - Detecting Car Speed using Object Detection and Depth Estimation: A Deep Learning Framework [0.0]
The tendency to over speeding is usually tried to be controlled using check points at various parts of the road but not all traffic police have the device to check speed with existing speed estimating devices such as LIDAR based, or Radar based guns.
The current project tries to address the issue of vehicle speed estimation with handheld devices such as mobile phones or wearable cameras with network connection to estimate the speed using deep learning frameworks.
arXiv Detail & Related papers (2024-08-08T10:47:02Z) - Vehicle Speed Detection System Utilizing YOLOv8: Enhancing Road Safety and Traffic Management for Metropolitan Areas [0.0]
Road accidents remain one of the leading causes of death in Bangladesh.
The YOLOv8 model can recognize and track cars in videos with greater speed and accuracy when trained under close supervision.
arXiv Detail & Related papers (2024-06-11T20:45:40Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid
Tracking [0.0]
Wrong-way driving is one of the main causes of road accidents and traffic jam all over the world.
In this paper, we propose an automatic wrong-way vehicle detection system from on-road surveillance camera footage.
arXiv Detail & Related papers (2022-10-19T00:53:28Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Vision-based Vehicle Speed Estimation for ITS: A Survey [0.47248250311484113]
The number of speed cameras installed worldwide has been growing in recent years.
Traffic monitoring and forecasting in road networks plays a fundamental role to enhance traffic, emissions and energy consumption in smart cities.
The use of vision-based systems brings great challenges to be solved, but also great potential advantages.
arXiv Detail & Related papers (2021-01-15T15:07:54Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-12-20T08:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.