論文の概要: Evaluating the Impact of Sequence Combinations on Breast Tumor Segmentation in Multiparametric MRI
- arxiv url: http://arxiv.org/abs/2406.07813v1
- Date: Wed, 12 Jun 2024 02:09:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 20:36:36.921922
- Title: Evaluating the Impact of Sequence Combinations on Breast Tumor Segmentation in Multiparametric MRI
- Title(参考訳): マルチパラメトリックMRIにおける乳腺腫瘍分節形成に対する配列の組み合わせの影響の評価
- Authors: Hang Min, Gorane Santamaria Hormaechea, Prabhakar Ramachandran, Jason Dowling,
- Abstract要約: mpMRIにおける配列の組み合わせの効果は未解明のままである。
DCE配列を用いたnnU-Netモデルは機能腫瘍容積(FTV)セグメンテーションにおいて0.69$pm$0.18のDice類似係数(DSC)を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiparametric magnetic resonance imaging (mpMRI) is a key tool for assessing breast cancer progression. Although deep learning has been applied to automate tumor segmentation in breast MRI, the effect of sequence combinations in mpMRI remains under-investigated. This study explores the impact of different combinations of T2-weighted (T2w), dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) map on breast tumor segmentation using nnU-Net. Evaluated on a multicenter mpMRI dataset, the nnU-Net model using DCE sequences achieved a Dice similarity coefficient (DSC) of 0.69 $\pm$ 0.18 for functional tumor volume (FTV) segmentation. For whole tumor mask (WTM) segmentation, adding the predicted FTV to DWI and ADC map improved the DSC from 0.57 $\pm$ 0.24 to 0.60 $\pm$ 0.21. Adding T2w did not yield significant improvement, which still requires further investigation under a more standardized imaging protocol. This study serves as a foundation for future work on predicting breast cancer treatment response using mpMRI.
- Abstract(参考訳): マルチパラメトリックMRI(Multiparametric magnetic resonance imaging)は、乳がんの進行を評価する重要なツールである。
深層学習は乳房MRIにおける腫瘍のセグメンテーションの自動化に応用されているが、mpMRIにおける配列の組み合わせの効果は未解明のままである。
本研究では,T2-weighted (T2w), dynamic contrast-enhanced MRI (DCE-MRI) とdifffusion-weighted Imaging (DWI) の異なる組み合わせが乳房腫瘍セグメント化に及ぼす影響について検討した。
DCEシークエンスを用いたnnU-Netモデルは, 機能腫瘍容積(FTV)セグメンテーションにおいて0.69$\pm$0.18のDice類似係数(DSC)を達成した。
全腫瘍マスク(WTM)セグメンテーションでは、予測されたFTVをDWIとADCマップに追加し、DSCを0.57$\pm$ 0.24から0.60$\pm$ 0.21に改善した。
T2wの追加は大幅な改善には至らなかったが、それでもより標準化された撮像プロトコルの下でさらなる調査が必要である。
本研究は,mpMRIを用いた乳癌治療反応の予測に関する今後の研究の基盤となる。
関連論文リスト
- Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Pre- to Post-Contrast Breast MRI Synthesis for Enhanced Tumour Segmentation [0.9722528000969453]
本研究は, GAN(Generative Adversarial Network)を用いて, コントラスト前T1強調脂肪飽和乳房MRIを対応する第1DCE-MRIシーケンスに翻訳することにより, 合成コントラスト増強の実現可能性について検討した。
定量的な画像品質指標を用いて生成したDCE-MRIデータを評価し、3D乳房切片の下流タスクに適用する。
以上の結果から, 造影後DCE-MRI合成が乳房のセグメンテーションモデルの堅牢性向上に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-17T21:48:41Z) - Synthesis of Contrast-Enhanced Breast MRI Using Multi-b-Value DWI-based
Hierarchical Fusion Network with Attention Mechanism [15.453470023481932]
造影MRI(CE-MRI)は腫瘍と浸潤した健全な組織との鑑別に優れる。
CE-MRIを得るためにガドリニウムベースの造影剤(GBCA)を使用することは、ネフローゼ性全身線維症と関連し、脳内での生体蓄積を引き起こす可能性がある。
造影剤の使用を減らすため,拡散強調画像(DWI)が重要画像技術として出現している。
論文 参考訳(メタデータ) (2023-07-03T09:46:12Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Exploring contrast generalisation in deep learning-based brain MRI-to-CT
synthesis [0.0]
MRIプロトコルは、経時的に変化するか、または低品質のsCTをもたらすセンターによって異なる可能性がある。
ドメインランダム化(DR)は、脳sCT生成のためのDLモデルの一般化を増大させる。
論文 参考訳(メタデータ) (2023-03-17T18:45:05Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Perfusion imaging in deep prostate cancer detection from mp-MRI: can we
take advantage of it? [0.0]
深部神経アーキテクチャにおける灌流画像からの情報を統合するための戦略を評価する。
ダイナミックコントラスト造影MR検査からの灌流マップでは,PCa病変のセグメンテーションとグレーディング性能に正の影響が認められた。
論文 参考訳(メタデータ) (2022-07-06T07:55:46Z) - PSIGAN: Joint probabilistic segmentation and image distribution matching
for unpaired cross-modality adaptation based MRI segmentation [4.573421102994323]
我々は、新しい関節確率分割と画像分布マッチング生成対向ネットワーク(PSIGAN)を開発した。
我々のUDAアプローチは、画像とセグメント間の共依存性を共同確率分布としてモデル化する。
T1wは0.87,T2wは0.90であった。
論文 参考訳(メタデータ) (2020-07-18T16:23:02Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。