論文の概要: Scaling Manipulation Learning with Visual Kinematic Chain Prediction
- arxiv url: http://arxiv.org/abs/2406.07837v3
- Date: Mon, 14 Oct 2024 15:17:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:39.601567
- Title: Scaling Manipulation Learning with Visual Kinematic Chain Prediction
- Title(参考訳): ビジュアル・キネマティック・チェイン予測を用いたスケール・マニピュレーション学習
- Authors: Xinyu Zhang, Yuhan Liu, Haonan Chang, Abdeslam Boularias,
- Abstract要約: 本研究では,多様な環境下でのロボット学習における準静的動作の高精度かつ普遍的な表現として,視覚キネマティクス連鎖を提案する。
我々は,Calvin,RLBench,Open-X,および実際のロボット操作タスクにおいて,BC変換器に対するVKTの優れた性能を示す。
- 参考スコア(独自算出の注目度): 32.99644520625179
- License:
- Abstract: Learning general-purpose models from diverse datasets has achieved great success in machine learning. In robotics, however, existing methods in multi-task learning are typically constrained to a single robot and workspace, while recent work such as RT-X requires a non-trivial action normalization procedure to manually bridge the gap between different action spaces in diverse environments. In this paper, we propose the visual kinematics chain as a precise and universal representation of quasi-static actions for robot learning over diverse environments, which requires no manual adjustment since the visual kinematic chains can be automatically obtained from the robot's model and camera parameters. We propose the Visual Kinematics Transformer (VKT), a convolution-free architecture that supports an arbitrary number of camera viewpoints, and that is trained with a single objective of forecasting kinematic structures through optimal point-set matching. We demonstrate the superior performance of VKT over BC transformers as a general agent on Calvin, RLBench, Open-X, and real robot manipulation tasks. Video demonstrations can be found at https://mlzxy.github.io/visual-kinetic-chain.
- Abstract(参考訳): 多様なデータセットから汎用モデルを学ぶことは、機械学習において大きな成功を収めた。
しかしながら、ロボット工学では、既存のマルチタスク学習の方法は、通常、単一のロボットとワークスペースに制約されるが、RT-Xのような最近の研究は、様々な環境における異なるアクション空間間のギャップを手動で埋めるために、非自明なアクション正規化手順を必要とする。
本稿では,ロボットのモデルとカメラパラメータから視覚運動連鎖を自動的に取得できるため,手動による調整が不要な,多様な環境におけるロボット学習における準静的動作の高精度かつ普遍的な表現として視覚運動連鎖を提案する。
本稿では,任意の数のカメラ視点をサポートする畳み込みのないアーキテクチャであるVisual Kinematics Transformer (VKT)を提案する。
我々は,Calvin,RLBench,Open-X,および実際のロボット操作タスクにおいて,BC変換器に対するVKTの優れた性能を示す。
ビデオデモはhttps://mlzxy.github.io/visual-kinetic-chain.comで見ることができる。
関連論文リスト
- SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
本稿では、視覚言語モデル(VLM)を用いて、様々な衣服カテゴリーにおけるキーポイント予測を改善する統一的なアプローチを提案する。
我々は、高度なシミュレーション技術を用いて大規模な合成データセットを作成し、大規模な実世界のデータを必要としないスケーラブルなトレーニングを可能にした。
実験結果から, VLM法はキーポイント検出精度とタスク成功率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-26T17:26:16Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
LLARVAは,ロボット学習タスク,シナリオ,環境を統一するための,新しい指導指導法で訓練されたモデルである。
我々は,Open X-Embodimentデータセットから8.5Mの画像-視覚的トレースペアを生成し,モデルを事前学習する。
実験によって強い性能が得られ、LLARVAは現代のいくつかのベースラインと比較してよく機能することを示した。
論文 参考訳(メタデータ) (2024-06-17T17:55:29Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
本研究は,ロボットにおける複数のタスクの出発点として機能する汎用表現を事前学習するためのパラダイムを導入する。
本稿では,ロボットデータから直接表現を自己管理的に構築することを目的として,PACT(Perception-Action Causal Transformer)を提案する。
より大規模な事前学習モデル上に小さなタスク特化ネットワークを微調整すると、同時に1つのモデルをスクラッチからトレーニングするのに比べ、性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-09-22T16:20:17Z) - Masked World Models for Visual Control [90.13638482124567]
視覚表現学習と動的学習を分離する視覚モデルに基づくRLフレームワークを提案する。
提案手法は,様々な視覚ロボット作業における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-06-28T18:42:27Z) - Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub
Robot [20.813028212068424]
我々は、新しいオブジェクトや異なるドメインの存在下で、オブジェクトセグメンテーションモデルに適応できる様々な技術について研究する。
データをストリーム化するロボットアプリケーションのための高速なインスタンスセグメンテーション学習のためのパイプラインを提案する。
提案したパイプラインを2つのデータセットでベンチマークし、実際のロボットであるiCubヒューマノイドにデプロイする。
論文 参考訳(メタデータ) (2022-06-27T17:14:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。