Toward Enhanced Reinforcement Learning-Based Resource Management via Digital Twin: Opportunities, Applications, and Challenges
- URL: http://arxiv.org/abs/2406.07857v2
- Date: Sun, 16 Jun 2024 01:46:06 GMT
- Title: Toward Enhanced Reinforcement Learning-Based Resource Management via Digital Twin: Opportunities, Applications, and Challenges
- Authors: Nan Cheng, Xiucheng Wang, Zan Li, Zhisheng Yin, Tom Luan, Xuemin Shen,
- Abstract summary: This article presents a digital twin (DT)-enhanced reinforcement learning (RL) framework aimed at optimizing performance and reliability in network resource management.
To deal with the challenges, a comprehensive DT-based framework is proposed to enhance the convergence speed and performance for unified RL-based resource management.
The proposed framework provides safe action exploration, more accurate estimates of long-term returns, faster training convergence, higher convergence performance, and real-time adaptation to varying network conditions.
- Score: 40.73920295596231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a digital twin (DT)-enhanced reinforcement learning (RL) framework aimed at optimizing performance and reliability in network resource management, since the traditional RL methods face several unified challenges when applied to physical networks, including limited exploration efficiency, slow convergence, poor long-term performance, and safety concerns during the exploration phase. To deal with the above challenges, a comprehensive DT-based framework is proposed to enhance the convergence speed and performance for unified RL-based resource management. The proposed framework provides safe action exploration, more accurate estimates of long-term returns, faster training convergence, higher convergence performance, and real-time adaptation to varying network conditions. Then, two case studies on ultra-reliable and low-latency communication (URLLC) services and multiple unmanned aerial vehicles (UAV) network are presented, demonstrating improvements of the proposed framework in performance, convergence speed, and training cost reduction both on traditional RL and neural network based Deep RL (DRL). Finally, the article identifies and explores some of the research challenges and open issues in this rapidly evolving field.
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
arXiv Detail & Related papers (2024-06-29T02:40:28Z) - Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN [7.277944770202078]
This work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading.
Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
arXiv Detail & Related papers (2024-01-21T21:57:22Z) - Deep Reinforcement Learning Based Cross-Layer Design in Terahertz Mesh
Backhaul Networks [12.963836913881801]
Terahertz (THz) mesh networks are attractive for next-generation wireless backhaul systems.
The efficient cross-layer routing and long-term resource allocation is yet an open problem in THz mesh networks.
This paper proposes a deep reinforcement learning (DRL) based cross-layer design in THz mesh networks.
arXiv Detail & Related papers (2023-10-08T06:36:00Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Toward Safe and Accelerated Deep Reinforcement Learning for
Next-Generation Wireless Networks [21.618559590818236]
We discuss two key practical challenges that are faced but rarely tackled when developing DRL-based RRM solutions.
In particular, we discuss the need to have safe and accelerated DRL-based RRM solutions that mitigate the slow convergence and performance instability exhibited by DRL algorithms.
arXiv Detail & Related papers (2022-09-16T04:50:49Z) - Accelerating Deep Reinforcement Learning for Digital Twin Network
Optimization with Evolutionary Strategies [0.0]
The community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management.
Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems.
In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem.
arXiv Detail & Related papers (2022-02-01T11:56:55Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.