Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN
- URL: http://arxiv.org/abs/2403.08775v1
- Date: Sun, 21 Jan 2024 21:57:22 GMT
- Title: Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN
- Authors: Ioannis Panitsas, Akrit Mudvari, Leandros Tassiulas,
- Abstract summary: This work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading.
Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
- Score: 7.277944770202078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In software-defined networking (SDN), the implementation of distributed SDN controllers, with each controller responsible for managing a specific sub-network or domain, plays a critical role in achieving a balance between centralized control, scalability, reliability, and network efficiency. These controllers must be synchronized to maintain a logically centralized view of the entire network. While there are various approaches for synchronizing distributed SDN controllers, most tend to prioritize goals such as optimization of communication latency or load balancing, often neglecting to address both the aspects simultaneously. This limitation becomes particularly significant when considering applications like Augmented and Virtual Reality (AR/VR), which demand constrained network latencies and substantial computational resources. Additionally, many existing studies in this field predominantly rely on value-based reinforcement learning (RL) methods, overlooking the potential advantages offered by state-of-the-art policy-based RL algorithms. To bridge this gap, our work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading within SDN environments, while selecting the most cost-effective servers for AR/VR task offloading. Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
Related papers
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR [30.146175299047325]
We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival.
A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources.
arXiv Detail & Related papers (2024-03-27T08:57:15Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
We propose a novel forecasting-aided DRL approach and its respective O-RAN practical deployment workflow to enhance DRL convergence.
Our approach shows up to 22.8%, 86.3%, and 300% improvements in the average initial reward value, convergence rate, and number of converged scenarios respectively.
arXiv Detail & Related papers (2023-09-01T14:30:04Z) - A State-Augmented Approach for Learning Optimal Resource Management
Decisions in Wireless Networks [58.720142291102135]
We consider a radio resource management (RRM) problem in a multi-user wireless network.
The goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users.
We propose a state-augmented parameterization for the RRM policy, where alongside the instantaneous network states, the RRM policy takes as input the set of dual variables corresponding to the constraints.
arXiv Detail & Related papers (2022-10-28T21:24:13Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - RL-QN: A Reinforcement Learning Framework for Optimal Control of
Queueing Systems [8.611328447624677]
We consider using model-based reinforcement learning (RL) to learn the optimal control policy for queueing networks.
Traditional approaches in RL, however, cannot handle the unbounded state spaces of the network control problem.
We propose a new algorithm, called Reinforcement Learning for Queueing Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space.
arXiv Detail & Related papers (2020-11-14T22:12:27Z) - Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks [22.06811314358283]
Wireless networks used for Internet of Things (IoT) are expected to largely involve cloud-based computing and processing.
In a cloud environment, dynamic computational resource allocation is essential to save energy while maintaining the performance of the processes.
This paper models this dynamic computational resource allocation problem into a Markov Decision Process (MDP) and designs a model-based reinforcement-learning agent to optimise the dynamic resource allocation of the CPU usage.
The results show that our agent rapidly converges to the optimal policy, stably performs in different settings, outperforms or at least equally performs compared to a baseline algorithm in energy savings for different scenarios.
arXiv Detail & Related papers (2020-10-10T15:16:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.