論文の概要: Unveiling the Power of Wavelets: A Wavelet-based Kolmogorov-Arnold Network for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2406.07869v2
- Date: Tue, 08 Oct 2024 14:42:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:29:38.395803
- Title: Unveiling the Power of Wavelets: A Wavelet-based Kolmogorov-Arnold Network for Hyperspectral Image Classification
- Title(参考訳): ウェーブレットのパワーを解放する:ハイパースペクトル画像分類のためのウェーブレットベースのコルモゴロフ・アルノルドネットワーク
- Authors: Seyd Teymoor Seydi, Zavareh Bozorgasl, Hao Chen,
- Abstract要約: 本稿では,ウェーブレットをベースとしたKolmogorov-Arnold Network(wav-kan)アーキテクチャを用いて,複雑な依存関係の効率的なモデリングを行う。
ウェーブレットベースのアクティベーションにより、Wav-KANはマルチスケールの空間およびスペクトルパターンを効果的にキャプチャできる。
- 参考スコア(独自算出の注目度): 3.009351592961681
- License:
- Abstract: Hyperspectral image classification is a crucial but challenging task due to the high dimensionality and complex spatial-spectral correlations inherent in hyperspectral data. This paper employs Wavelet-based Kolmogorov-Arnold Network (wav-kan) architecture tailored for efficient modeling of these intricate dependencies. Inspired by the Kolmogorov-Arnold representation theorem, Wav-KAN incorporates wavelet functions as learnable activation functions, enabling non-linear mapping of the input spectral signatures. The wavelet-based activation allows Wav-KAN to effectively capture multi-scale spatial and spectral patterns through dilations and translations. Experimental evaluation on three benchmark hyperspectral datasets (Salinas, Pavia, Indian Pines) demonstrates the superior performance of Wav-KAN compared to traditional multilayer perceptrons (MLPs) and the recently proposed Spline-based KAN (Spline-KAN) model. In this work we are: (1) conducting more experiments on additional hyperspectral datasets (Pavia University, WHU-Hi, and Urban Hyperspectral Image) to further validate the generalizability of Wav-KAN; (2) developing a multiresolution Wav-KAN architecture to capture scale-invariant features; (3) analyzing the effect of dimensional reduction techniques on classification performance; (4) exploring optimization methods for tuning the hyperparameters of KAN models; and (5) comparing Wav-KAN with other state-of-the-art models in hyperspectral image classification.
- Abstract(参考訳): ハイパースペクトル画像分類は、ハイパースペクトルデータに固有の高次元および複雑な空間スペクトル相関のため、重要な課題であるが難しい課題である。
本稿では,ウェーブレットをベースとしたKolmogorov-Arnold Network(wav-kan)アーキテクチャを用いて,複雑な依存関係の効率的なモデリングを行う。
コルモゴロフ・アルノルドの表現定理に触発されて、Wav-KANはウェーブレット関数を学習可能な活性化関数として取り入れ、入力されたスペクトルシグネチャの非線形マッピングを可能にする。
ウェーブレットをベースとしたアクティベーションにより、Wav-KANはダイレーションや翻訳を通じて、マルチスケールの空間パターンとスペクトルパターンを効果的にキャプチャできる。
3つのベンチマークハイパースペクトルデータセット(Salinas, Pavia, Indian Pines)の実験的評価は、従来の多層パーセプトロン(MLP)や最近提案されたSpline-based Kan(Spline-KAN)モデルと比較して、Wav-KANの優れた性能を示す。
本研究は,(1)付加的なハイパースペクトルデータセット(パヴィア大学,WHU-Hi,都市ハイパースペクトル画像)を用いて,Wav-KANの一般化可能性のさらなる検証を行うこと,(2)スケール不変な特徴を捉えるためのマルチレゾリューションなWav-KANアーキテクチャを開発すること,(3)次元還元技術が分類性能に与える影響を分析すること,(4)kanモデルのハイパースペクトルのチューニング方法を検討すること,(5)ハイパースペクトル画像分類におけるWav-KANと他の最先端モデルとの比較を行うこと,である。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Wav-KAN: Wavelet Kolmogorov-Arnold Networks [3.38220960870904]
Wav-KANは、Wavelet Kolmogorov-Arnold Networks(Wav-KAN)フレームワークを活用して、解釈性とパフォーマンスを向上させる革新的なニューラルネットワークアーキテクチャである。
我々の結果は、解釈可能な高性能ニューラルネットワークを開発するための強力なツールとして、Wav-KANの可能性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-05-21T14:36:16Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Learning transformer-based heterogeneously salient graph representation for multimodal remote sensing image classification [42.15709954199397]
本稿では,変圧器を用いたヘテロジニアサリエントグラフ表現法(THSGR)を提案する。
まず、多モード不均一グラフエンコーダを用いて、非ユークリッド構造の特徴を異種データから符号化する。
自己アテンションフリーなマルチ畳み込み変調器は、効果的かつ効率的な長期依存性モデリングのために設計されている。
論文 参考訳(メタデータ) (2023-11-17T04:06:20Z) - Attention based Dual-Branch Complex Feature Fusion Network for
Hyperspectral Image Classification [1.3249509346606658]
提案モデルはパヴィア大学とサリナスのデータセットで評価される。
その結果,提案手法は,全体の精度,平均精度,Kappaにおいて,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-11-02T22:31:24Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Inlicit Neural Representations (INR)は、新しい効果的な表現として進歩を遂げている。
本稿では、空間座標を対応するスペクトル放射率値にマッピングする連続関数により、HSIを表すINRに基づく新しいHSI再構成モデルを提案する。
論文 参考訳(メタデータ) (2021-12-20T14:07:54Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Hypergraph Spectral Analysis and Processing in 3D Point Cloud [80.25162983501308]
3Dポイントクラウドは、3Dオブジェクトや周囲を特徴付ける基本的なデータ構造になっている。
3次元点雲を効率的に処理するには、基礎となる構造と外周騒音に適したモデルが常に重要である。
本稿では,高速な解析と処理が可能なハイパーグラフベースの新しいポイントクラウドモデルを提案する。
論文 参考訳(メタデータ) (2020-01-08T05:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。