Reinforcement Learning to Disentangle Multiqubit Quantum States from Partial Observations
- URL: http://arxiv.org/abs/2406.07884v1
- Date: Wed, 12 Jun 2024 05:23:08 GMT
- Title: Reinforcement Learning to Disentangle Multiqubit Quantum States from Partial Observations
- Authors: Pavel Tashev, Stefan Petrov, Friederike Metz, Marin Bukov,
- Abstract summary: We present a deep reinforcement learning approach to constructing short disentangling circuits for arbitrary 4-, 5-, and 6-qubit states.
We demonstrate the agent's ability to identify and exploit the entanglement structure of multiqubit states.
We report a general circuit to prepare an arbitrary 4-qubit state using at most 5 two-qubit (10 CNOT) gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using partial knowledge of a quantum state to control multiqubit entanglement is a largely unexplored paradigm in the emerging field of quantum interactive dynamics with the potential to address outstanding challenges in quantum state preparation and compression, quantum control, and quantum complexity. We present a deep reinforcement learning (RL) approach to constructing short disentangling circuits for arbitrary 4-, 5-, and 6-qubit states using an actor-critic algorithm. With access to only two-qubit reduced density matrices, our agent decides which pairs of qubits to apply two-qubit gates on; requiring only local information makes it directly applicable on modern NISQ devices. Utilizing a permutation-equivariant transformer architecture, the agent can autonomously identify qubit permutations within the state, and adjusts the disentangling protocol accordingly. Once trained, it provides circuits from different initial states without further optimization. We demonstrate the agent's ability to identify and exploit the entanglement structure of multiqubit states. For 4-, 5-, and 6-qubit Haar-random states, the agent learns to construct disentangling circuits that exhibit strong correlations both between consecutive gates and among the qubits involved. Through extensive benchmarking, we show the efficacy of the RL approach to find disentangling protocols with minimal gate resources. We explore the resilience of our trained agents to noise, highlighting their potential for real-world quantum computing applications. Analyzing optimal disentangling protocols, we report a general circuit to prepare an arbitrary 4-qubit state using at most 5 two-qubit (10 CNOT) gates.
Related papers
- Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - SWAP-less Implementation of Quantum Algorithms [0.0]
We present a formalism based on tracking the flow of parity quantum information to implement algorithms on devices with limited connectivity.
We leverage the fact that entangling gates not only manipulate quantum states but can also be exploited to transport quantum information.
arXiv Detail & Related papers (2024-08-20T14:51:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - State preparation by shallow circuits using feed forward [0.0]
We make use of this four-step scheme not to carry out fault-tolerant computations, but to enhance short, constant-depth, quantum circuits.
We show that LAQCC circuits can create long-ranged interactions, which constant-depth quantum circuits cannot achieve.
We create three new state preparation protocols for a uniform superposition over an arbitrary number of states.
arXiv Detail & Related papers (2023-07-27T13:20:21Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly [0.9208007322096532]
We consider the most general class of protocols transforming unknown unitary operations within the quantum circuit model.
In the proposed protocol, the input qubit-unitary operation is called 4 times to achieve the inverse operation.
We show a method to reduce the large search space representing all possible protocols.
arXiv Detail & Related papers (2022-09-07T03:33:09Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient, stabilized two-qubit gates on a trapped-ion quantum computer [4.547776040126478]
We present two methods to construct optimal pulses for entangling gates on a pair of ions within a trapped ion chain.
We illustrate these trade-offs on a trapped-ion quantum computer.
arXiv Detail & Related papers (2021-01-19T22:40:28Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.