Multivariate Log-based Anomaly Detection for Distributed Database
- URL: http://arxiv.org/abs/2406.07976v1
- Date: Wed, 12 Jun 2024 08:01:30 GMT
- Title: Multivariate Log-based Anomaly Detection for Distributed Database
- Authors: Lingzhe Zhang, Tong Jia, Mengxi Jia, Ying Li, Yong Yang, Zhonghai Wu,
- Abstract summary: MultiLog is an innovative multivariate log-based anomaly detection approach tailored for distributed databases.
Our experiments, based on this novel dataset, demonstrate MultiLog's superiority, outperforming existing state-of-the-art methods by approximately 12%.
- Score: 17.33465218952355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed databases are fundamental infrastructures of today's large-scale software systems such as cloud systems. Detecting anomalies in distributed databases is essential for maintaining software availability. Existing approaches, predominantly developed using Loghub-a comprehensive collection of log datasets from various systems-lack datasets specifically tailored to distributed databases, which exhibit unique anomalies. Additionally, there's a notable absence of datasets encompassing multi-anomaly, multi-node logs. Consequently, models built upon these datasets, primarily designed for standalone systems, are inadequate for distributed databases, and the prevalent method of deeming an entire cluster anomalous based on irregularities in a single node leads to a high false-positive rate. This paper addresses the unique anomalies and multivariate nature of logs in distributed databases. We expose the first open-sourced, comprehensive dataset with multivariate logs from distributed databases. Utilizing this dataset, we conduct an extensive study to identify multiple database anomalies and to assess the effectiveness of state-of-the-art anomaly detection using multivariate log data. Our findings reveal that relying solely on logs from a single node is insufficient for accurate anomaly detection on distributed database. Leveraging these insights, we propose MultiLog, an innovative multivariate log-based anomaly detection approach tailored for distributed databases. Our experiments, based on this novel dataset, demonstrate MultiLog's superiority, outperforming existing state-of-the-art methods by approximately 12%.
Related papers
- LogDB: Multivariate Log-based Failure Diagnosis for Distributed Databases (Extended from MultiLog) [8.219850275733513]
We propose LogDB, a log-based failure diagnosis method specifically designed for distributed databases.<n>LogDB extracts and compresses log features at each database node and then aggregates these features at the master node to diagnose cluster-wide anomalies.
arXiv Detail & Related papers (2025-05-03T03:56:40Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Federated Neural Graph Databases [53.03085605769093]
We propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy.
Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
arXiv Detail & Related papers (2024-02-22T14:57:44Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Robust Failure Diagnosis of Microservice System through Multimodal Data [14.720995687799668]
We propose DiagFusion, a robust failure diagnosis approach that uses multimodal data.
Our evaluations show that DiagFusion outperforms existing methods in terms of root cause instance localization and failure type determination.
arXiv Detail & Related papers (2023-02-21T08:28:28Z) - Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
We propose Hades, the first end-to-end semi-supervised approach to identify system anomalies based on heterogeneous data.
Our approach employs a hierarchical architecture to learn a global representation of the system status by fusing log semantics and metric patterns.
We evaluate Hades extensively on large-scale simulated data and datasets from Huawei Cloud.
arXiv Detail & Related papers (2023-02-14T09:02:11Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - A graph representation based on fluid diffusion model for multimodal
data analysis: theoretical aspects and enhanced community detection [14.601444144225875]
We introduce a novel model for graph definition based on fluid diffusion.
Our method is able to strongly outperform state-of-the-art schemes for community detection in multimodal data analysis.
arXiv Detail & Related papers (2021-12-07T16:30:03Z) - Learning Dependencies in Distributed Cloud Applications to Identify and
Localize Anomalies [58.88325379746632]
We present Arvalus and its variant D-Arvalus, a neural graph transformation method that models system components as nodes and their dependencies as edges to improve the identification and localization of anomalies.
Given a series of metric, our method predicts the most likely system state - either normal or an anomaly class - and performs localization when an anomaly is detected.
The evaluation shows the generally good prediction performance of Arvalus and reveals the advantage of D-Arvalus which incorporates information about system component dependencies.
arXiv Detail & Related papers (2021-03-09T06:34:05Z) - Multi-Source Anomaly Detection in Distributed IT Systems [0.2538209532048867]
We utilize the joint representation from the distributed traces and system log data for the task of anomaly detection in distributed systems.
We formalize a learning task - next template prediction NTP, that is used as a generalization for anomaly detection for both logs and distributed trace.
arXiv Detail & Related papers (2021-01-13T10:11:32Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.