論文の概要: Non-convolutional Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2408.00165v3
- Date: Sun, 29 Sep 2024 00:15:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:01:09.741184
- Title: Non-convolutional Graph Neural Networks
- Title(参考訳): 非畳み込みグラフニューラルネットワーク
- Authors: Yuanqing Wang, Kyunghyun Cho,
- Abstract要約: 畳み込み演算子を完全に含まない単純なグラフ学習モジュールを設計し、RUMニューラルネットワークを用いたランダムウォークを作成した。
RUMは競合する性能を実現するが、より堅牢で、メモリ効率が高く、スケーラブルで、最も単純な畳み込みGNNよりも高速である。
- 参考スコア(独自算出の注目度): 46.79328529882998
- License:
- Abstract: Rethink convolution-based graph neural networks (GNN) -- they characteristically suffer from limited expressiveness, over-smoothing, and over-squashing, and require specialized sparse kernels for efficient computation. Here, we design a simple graph learning module entirely free of convolution operators, coined random walk with unifying memory (RUM) neural network, where an RNN merges the topological and semantic graph features along the random walks terminating at each node. Relating the rich literature on RNN behavior and graph topology, we theoretically show and experimentally verify that RUM attenuates the aforementioned symptoms and is more expressive than the Weisfeiler-Lehman (WL) isomorphism test. On a variety of node- and graph-level classification and regression tasks, RUM not only achieves competitive performance, but is also robust, memory-efficient, scalable, and faster than the simplest convolutional GNNs.
- Abstract(参考訳): 畳み込みベースのグラフニューラルネットワーク(GNN)を再考する -- 表現力の制限、過度なスムース化、過剰なスキャッシングが特徴であり、効率的な計算には特別なスパースカーネルが必要である。
本稿では、畳み込み演算子を完全に含まない単純なグラフ学習モジュールを設計し、ランダムウォークと統一メモリ(RUM)ニューラルネットワークを合成し、RNNが各ノードで終了するランダムウォークに沿ってトポロジとセマンティックグラフの特徴をマージする。
RNNの挙動とグラフトポロジーに関する豊富な文献に関連して,RUMが上記の症状を緩和し,Weisfeiler-Lehman(WL)同型性試験よりも表現力が高いことを理論的に証明し,実験的に検証した。
様々なノードレベルの分類と回帰タスクにおいて、RUMは競争性能を達成するだけでなく、最も単純な畳み込みGNNよりも堅牢で、メモリ効率が良く、スケーラブルで、高速である。
関連論文リスト
- Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction [25.87108956561691]
リンク予測はグラフ学習における基本的なタスクであり、本質的にグラフのトポロジーによって形作られる。
種々の重みを適応・一般化するための統一行列定式化を提案する。
また,この定式化を効率的に実装するためのHuristic Learning Graph Neural Network (HL-GNN)を提案する。
論文 参考訳(メタデータ) (2024-06-12T08:05:45Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
グラフニューラルネットワーク(GNN)は最近、グラフ学習において注目を集めている。
既存のGNNは、各ノード周辺の非常に限られた地区からのローカル情報のみを使用する。
本稿では,単純かつ効果的な深層学習のクラスであるTopological Graph Neural Network (TTG-NN)を提案する。
実データ実験により,提案したTTG-NNは,グラフベンチマークにおいて20の最先端手法より優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:55:01Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
ラベルがノードまたはグラフに添付されているかどうかに応じて、2種類のグラフニューラルネットワーク(GNN)が調査されます。
gnnトレーニングアルゴリズムの設計と解析のための包括的なフレームワークを開発した。
提案アルゴリズムは,GNNの根底にある真のパラメータに対する線形収束率を保証する。
論文 参考訳(メタデータ) (2020-12-07T02:54:48Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。