論文の概要: Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties
- arxiv url: http://arxiv.org/abs/2406.08075v1
- Date: Wed, 12 Jun 2024 10:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 17:24:58.038767
- Title: Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties
- Title(参考訳): 物理化学的特性予測における分子情報と経験値のバランス
- Authors: Johannes Zenn, Dominik Gond, Fabian Jirasek, Robert Bamler,
- Abstract要約: 本稿では,分子記述子と表現学習を組み合わせた一般的な手法を提案する。
提案したハイブリッドモデルは,グラフニューラルネットワークを用いた化学構造情報を利用する。
構造に基づく予測が信頼できない場合を自動的に検出し、表現学習に基づく予測によって修正する。
- 参考スコア(独自算出の注目度): 8.649679686652648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the physico-chemical properties of pure substances and mixtures is a central task in thermodynamics. Established prediction methods range from fully physics-based ab-initio calculations, which are only feasible for very simple systems, over descriptor-based methods that use some information on the molecules to be modeled together with fitted model parameters (e.g., quantitative-structure-property relationship methods or classical group contribution methods), to representation-learning methods, which may, in extreme cases, completely ignore molecular descriptors and extrapolate only from existing data on the property to be modeled (e.g., matrix completion methods). In this work, we propose a general method for combining molecular descriptors with representation learning using the so-called expectation maximization algorithm from the probabilistic machine learning literature, which uses uncertainty estimates to trade off between the two approaches. The proposed hybrid model exploits chemical structure information using graph neural networks, but it automatically detects cases where structure-based predictions are unreliable, in which case it corrects them by representation-learning based predictions that can better specialize to unusual cases. The effectiveness of the proposed method is demonstrated using the prediction of activity coefficients in binary mixtures as an example. The results are compelling, as the method significantly improves predictive accuracy over the current state of the art, showcasing its potential to advance the prediction of physico-chemical properties in general.
- Abstract(参考訳): 純粋な物質と混合物の物理化学的性質を予測することは熱力学における中心的な課題である。
確立された予測手法は、非常に単純なシステムでしか実現できない完全な物理ベースのab-initio計算から、適合したモデルパラメータ(例えば、定量的構造-プロパティ関係法や古典的なグループ寄与法)と共にモデル化される分子に関する情報を使用する記述子ベースの方法、そして、極端な場合において、モデル化されるプロパティ上の既存のデータ(例えば、行列補完法)からのみ、分子記述子と外挿を完全に無視する表現学習方法まで様々である。
本研究では,分子記述子と表現学習を組み合わせた一般的な手法として,確率論的機械学習文献からの予測最大化アルゴリズムを提案する。
提案したハイブリッドモデルは,グラフニューラルネットワークを用いた化学構造情報を利用するが,構造に基づく予測が信頼できないケースを自動的に検出する。
本手法の有効性は,二成分混合物の活性係数の予測を例に示す。
この手法は現在の最先端技術よりも予測精度を著しく向上させ、物理化学的特性の予測を推し進める可能性を示している。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Hierarchical Matrix Completion for the Prediction of Properties of Binary Mixtures [3.0478550046333965]
データ駆動モデルを改善するための新しいジェネリックアプローチを導入する。
化学のクラスに同じように振る舞うコンポーネントを持ち込み、それらを共同でモデル化します。
クラスタリングを使用すると、クラスタリングなしのCMに比べて予測が大幅に改善される。
論文 参考訳(メタデータ) (2024-10-08T14:04:30Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
NPTアンサンブルにおける共存シミュレーションから自律的に学習することで融点を計算するアルゴリズムを提案する。
固液共存進化の物理モデルを統合することで、アルゴリズムの精度が向上し、最適な意思決定が可能になることを実証する。
論文 参考訳(メタデータ) (2023-06-23T07:53:09Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
物理科学では、限られた訓練データは将来の観測データを適切に特徴づけることができない。
特に外挿を依頼される場合、モデルが不確実性を適切に示すことは重要である。
火星探査機キュリオシティに搭載されたChemCam装置のレーザ誘起分解分光データに関する方法論を実証した。
論文 参考訳(メタデータ) (2022-12-14T23:57:46Z) - Low cost prediction of probability distributions of molecular properties
for early virtual screening [0.8702432681310399]
本稿では, 階層的相関再構築手法を適用し, 人口統計, 財務, 天文学的データの解析に応用した。
この手法は、望まれる物理化学的/ADMET特性の可能性が低い化合物の迅速な拒絶を可能にするため、医薬化学者にとって大きな支援となる。
論文 参考訳(メタデータ) (2022-07-21T13:29:26Z) - Hybridizing Physical and Data-driven Prediction Methods for
Physicochemical Properties [19.50116420011026]
本稿では,物理化学的特性の予測のための物理・データ駆動手法のハイブリッド化手法を提案する。
アプローチは、物理手法の予測を事前のモデルに蒸留し、ベイズ推定を用いたスパース実験データと組み合わせる。
論文 参考訳(メタデータ) (2022-02-17T18:15:03Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Calibrated Uncertainty for Molecular Property Prediction using Ensembles
of Message Passing Neural Networks [11.47132155400871]
我々は、分子や物質の特性を予測するために特別に設計されたメッセージパッシングニューラルネットワークを拡張した。
その結果,分子生成エネルギーのキャリブレーションの不確実性を考慮した予測モデルが得られた。
論文 参考訳(メタデータ) (2021-07-13T13:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。