論文の概要: Hybridizing Physical and Data-driven Prediction Methods for
Physicochemical Properties
- arxiv url: http://arxiv.org/abs/2202.08804v1
- Date: Thu, 17 Feb 2022 18:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 17:43:21.854529
- Title: Hybridizing Physical and Data-driven Prediction Methods for
Physicochemical Properties
- Title(参考訳): 物理化学的性質の物理およびデータ駆動予測手法のハイブリダイゼーション
- Authors: Fabian Jirasek, Robert Bamler, and Stephan Mandt
- Abstract要約: 本稿では,物理化学的特性の予測のための物理・データ駆動手法のハイブリッド化手法を提案する。
アプローチは、物理手法の予測を事前のモデルに蒸留し、ベイズ推定を用いたスパース実験データと組み合わせる。
- 参考スコア(独自算出の注目度): 19.50116420011026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a generic way to hybridize physical and data-driven methods for
predicting physicochemical properties. The approach `distills' the physical
method's predictions into a prior model and combines it with sparse
experimental data using Bayesian inference. We apply the new approach to
predict activity coefficients at infinite dilution and obtain significant
improvements compared to the data-driven and physical baselines and established
ensemble methods from the machine learning literature.
- Abstract(参考訳): 本稿では,物理化学的特性の予測のための物理・データ駆動手法のハイブリッド化手法を提案する。
このアプローチは、物理手法の予測を事前のモデルに 'distills' し、ベイズ推定を用いた疎い実験データと組み合わせる。
本研究では,データ駆動型および物理ベースラインと比較して,無限希釈時の活動係数の予測に新たなアプローチを適用し,機械学習文献からアンサンブル法を確立した。
関連論文リスト
- Hierarchical Matrix Completion for the Prediction of Properties of Binary Mixtures [3.0478550046333965]
データ駆動モデルを改善するための新しいジェネリックアプローチを導入する。
化学のクラスに同じように振る舞うコンポーネントを持ち込み、それらを共同でモデル化します。
クラスタリングを使用すると、クラスタリングなしのCMに比べて予測が大幅に改善される。
論文 参考訳(メタデータ) (2024-10-08T14:04:30Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
本稿では、物理に基づく先行技術と高度な機械学習技術との相乗効果を生かした、新しいデータ駆動型フレームワークを提案する。
本フレームワークでは, 特定の非線形系のクラスに合わせて, 特定の物理系を組み込んだ4つのアルゴリズムを紹介する。
これらの事前の統合はまた、ニューラルネットワークの表現力を高め、物理的現象に典型的な複雑なパターンをキャプチャすることを可能にする。
論文 参考訳(メタデータ) (2024-06-20T23:10:41Z) - Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties [8.649679686652648]
本稿では,分子記述子と表現学習を組み合わせた一般的な手法を提案する。
提案したハイブリッドモデルは,グラフニューラルネットワークを用いた化学構造情報を利用する。
構造に基づく予測が信頼できない場合を自動的に検出し、表現学習に基づく予測によって修正する。
論文 参考訳(メタデータ) (2024-06-12T10:51:00Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
NPTアンサンブルにおける共存シミュレーションから自律的に学習することで融点を計算するアルゴリズムを提案する。
固液共存進化の物理モデルを統合することで、アルゴリズムの精度が向上し、最適な意思決定が可能になることを実証する。
論文 参考訳(メタデータ) (2023-06-23T07:53:09Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Calibrated Uncertainty for Molecular Property Prediction using Ensembles
of Message Passing Neural Networks [11.47132155400871]
我々は、分子や物質の特性を予測するために特別に設計されたメッセージパッシングニューラルネットワークを拡張した。
その結果,分子生成エネルギーのキャリブレーションの不確実性を考慮した予測モデルが得られた。
論文 参考訳(メタデータ) (2021-07-13T13:28:11Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Machine Learning in Thermodynamics: Prediction of Activity Coefficients
by Matrix Completion [34.7384528263504]
任意の二成分混合物の活性係数を予測する確率行列分解モデルを提案する。
提案手法は,30年以上にわたって改良されてきた最先端の手法より優れている。
これは二成分混合物の物理化学的性質を予測する新しい方法への展望を開放する。
論文 参考訳(メタデータ) (2020-01-29T03:16:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。