論文の概要: Research Trends for the Interplay between Large Language Models and Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2406.08223v1
- Date: Wed, 12 Jun 2024 13:52:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:46:00.370595
- Title: Research Trends for the Interplay between Large Language Models and Knowledge Graphs
- Title(参考訳): 大規模言語モデルと知識グラフの相互作用に関する研究動向
- Authors: Hanieh Khorashadizadeh, Fatima Zahra Amara, Morteza Ezzabady, Frédéric Ieng, Sanju Tiwari, Nandana Mihindukulasooriya, Jinghua Groppe, Soror Sahri, Farah Benamara, Sven Groppe,
- Abstract要約: 本稿では,大規模言語モデル(LLM)と知識グラフ(KG)の相乗関係について検討する。
本研究の目的は、KG質問回答、オントロジー生成、KG検証、およびLCMによるKG精度と一貫性の向上など、現在の研究におけるギャップに対処することである。
- 参考スコア(独自算出の注目度): 5.364370360239422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey investigates the synergistic relationship between Large Language Models (LLMs) and Knowledge Graphs (KGs), which is crucial for advancing AI's capabilities in understanding, reasoning, and language processing. It aims to address gaps in current research by exploring areas such as KG Question Answering, ontology generation, KG validation, and the enhancement of KG accuracy and consistency through LLMs. The paper further examines the roles of LLMs in generating descriptive texts and natural language queries for KGs. Through a structured analysis that includes categorizing LLM-KG interactions, examining methodologies, and investigating collaborative uses and potential biases, this study seeks to provide new insights into the combined potential of LLMs and KGs. It highlights the importance of their interaction for improving AI applications and outlines future research directions.
- Abstract(参考訳): 本稿では,Large Language Models(LLMs)とKGs(KGs)の相乗的関係について検討する。
本研究の目的は、KG質問回答、オントロジー生成、KG検証、およびLCMによるKG精度と一貫性の向上など、現在の研究におけるギャップに対処することである。
本稿は,KGに対する記述文と自然言語クエリ生成におけるLLMの役割について検討する。
LLMとKGの相互作用の分類、方法論の検証、協調的な使用法と潜在的なバイアスの調査を含む構造化された分析を通じて、LLMとKGの複合可能性に関する新たな洞察を提供する。
AIアプリケーションを改善するための相互作用の重要性を強調し、今後の研究方向性を概説する。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
大規模言語モデル(LLM)は、言語理解と生成において驚くべき結果を示す。
幻覚やドメイン固有の知識の欠如など、いくつかの欠点がある。
これらの問題は知識グラフ(KG)を組み込むことで効果的に緩和することができる。
本研究は、KGを用いたLLM、LLMベースのKG、LLM-KGハイブリッドアプローチに関する28の論文の概要をまとめた。
論文 参考訳(メタデータ) (2024-07-09T05:42:53Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Knowledge Graph Large Language Model (KG-LLM) for Link Prediction [43.55117421485917]
本稿では,知識グラフタスクに大規模言語モデル(LLM)を活用する新しいフレームワークである知識グラフ大言語モデル(KG-LLM)を紹介する。
まず、構造化知識グラフデータを自然言語に変換し、次にこれらの自然言語プロンプトを微調整 LLM に変換する。
KG-LLMフレームワークの有効性を示すため,Flan-T5,LLaMa2,Gemmaの3つのLLMを微調整した。
論文 参考訳(メタデータ) (2024-03-12T04:47:29Z) - A Survey on Knowledge Distillation of Large Language Models [102.84645991075283]
知識蒸留(KD)は、高度な能力をオープンソースモデルに転送するための重要な方法論である。
本稿では,大規模言語モデル(LLM)の領域におけるKDの役割を包括的に調査する。
論文 参考訳(メタデータ) (2024-02-20T16:17:37Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
大規模言語モデル(LLM)は、自然言語処理と人工知能の分野で新たな波を発生させている。
知識グラフ(KG)、ウィキペディア、フアプ(英語版)は、豊富な事実知識を明示的に記憶する構造化された知識モデルである。
論文 参考訳(メタデータ) (2023-06-14T07:15:26Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities
and Future Opportunities [68.86209486449924]
知識グラフ(KG)の構築と推論のための大規模言語モデル(LLM)の評価。
我々は,LLMと外部ソースを用いたマルチエージェントベースのアプローチであるAutoKGを提案し,KGの構築と推論を行う。
論文 参考訳(メタデータ) (2023-05-22T15:56:44Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。