論文の概要: MaIL: Improving Imitation Learning with Mamba
- arxiv url: http://arxiv.org/abs/2406.08234v1
- Date: Wed, 12 Jun 2024 14:01:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:36:08.325040
- Title: MaIL: Improving Imitation Learning with Mamba
- Title(参考訳): MaIL: Mambaによる模倣学習の改善
- Authors: Xiaogang Jia, Qian Wang, Atalay Donat, Bowen Xing, Ge Li, Hongyi Zhou, Onur Celik, Denis Blessing, Rudolf Lioutikov, Gerhard Neumann,
- Abstract要約: Mamba Imitation Learning (MaIL)は、最先端(SoTA)トランスフォーマーポリシーに代わる計算効率の良い代替手段を提供する、新しい模倣学習アーキテクチャである。
Mambaは、Transformersに対するSSMやライバルのパフォーマンスを大幅に改善し、ILポリシーの魅力的な代替品として位置づけている。
- 参考スコア(独自算出の注目度): 30.96458274130313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces Mamba Imitation Learning (MaIL), a novel imitation learning (IL) architecture that offers a computationally efficient alternative to state-of-the-art (SoTA) Transformer policies. Transformer-based policies have achieved remarkable results due to their ability in handling human-recorded data with inherently non-Markovian behavior. However, their high performance comes with the drawback of large models that complicate effective training. While state space models (SSMs) have been known for their efficiency, they were not able to match the performance of Transformers. Mamba significantly improves the performance of SSMs and rivals against Transformers, positioning it as an appealing alternative for IL policies. MaIL leverages Mamba as a backbone and introduces a formalism that allows using Mamba in the encoder-decoder structure. This formalism makes it a versatile architecture that can be used as a standalone policy or as part of a more advanced architecture, such as a diffuser in the diffusion process. Extensive evaluations on the LIBERO IL benchmark and three real robot experiments show that MaIL: i) outperforms Transformers in all LIBERO tasks, ii) achieves good performance even with small datasets, iii) is able to effectively process multi-modal sensory inputs, iv) is more robust to input noise compared to Transformers.
- Abstract(参考訳): 本研究は,新しい模倣学習(IL)アーキテクチャであるMamba Imitation Learning(MaIL)を紹介する。
トランスフォーマーベースのポリシーは、本質的に非マルコフ的な振る舞いを持つ人間の記録データを扱う能力により、顕著な成果を上げている。
しかし、彼らの高いパフォーマンスは、効果的なトレーニングを複雑にする大きなモデルの欠点によってもたらされる。
状態空間モデル(SSM)はその効率性で知られているが、トランスフォーマーの性能に匹敵することはなかった。
Mambaは、Transformersに対するSSMやライバルのパフォーマンスを大幅に改善し、ILポリシーの魅力的な代替品として位置づけている。
MaILは、Mambaをバックボーンとして活用し、エンコーダ-デコーダ構造でMambaを使用するフォーマリズムを導入している。
この形式主義は、スタンドアロンのポリシーとして、あるいは拡散過程におけるディフューザのようなより高度なアーキテクチャの一部として使用することができる、汎用的なアーキテクチャである。
LIBERO ILベンチマークの大規模評価と3つの実ロボット実験により,MaILは以下の結果を得た。
i)全てのLIBEROタスクにおいてトランスフォーマーを上回っます。
二 小さいデータセットであっても、良好な性能を達成すること。
三 マルチモーダル感覚入力を効果的に処理することができること。
iv) トランスフォーマーに比べて入力ノイズに強い。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - Revealing and Mitigating the Local Pattern Shortcuts of Mamba [25.19835905377437]
この問題に対処するために,グローバルな選択モジュールをMambaモデルに導入する。
提案手法では,4M余剰パラメータの導入により,分散情報を用いたタスクにおいて,Mambaモデル(130M)が大幅な改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-21T06:42:11Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - An Empirical Study of Mamba-based Pedestrian Attribute Recognition [15.752464463535178]
本論文は,Mambaを2つの典型的なPARフレームワーク,テキスト画像融合アプローチと純粋ビジョンMambaマルチラベル認識フレームワークに設計・適応する。
属性タグを追加入力として操作することは、必ずしも改善につながるとは限らない。具体的には、Vimを拡張できるが、VMambaではできない。
これらの実験結果は、単にTransformerでMambaを拡張すれば、パフォーマンスが向上するだけでなく、特定の設定でより良い結果が得られることを示している。
論文 参考訳(メタデータ) (2024-07-15T00:48:06Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
水中画像強調(UIE)技術は,光吸収・散乱による水中画像劣化問題に対処することを目的としている。
近年、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースの手法が広く研究されている。
MambaUIEは、グローバルおよびローカル情報を効率的に合成することができ、非常に少数のパラメータを高い精度で保持する。
論文 参考訳(メタデータ) (2024-04-22T05:12:11Z) - RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers [2.8554857235549753]
トランスフォーマーアーキテクチャのコアメカニズム -- 注意には、トレーニングにおけるO(n2)$時間複雑さと推論におけるO(n)$時間複雑さが必要です。
状態空間モデルに基づく有名なモデル構造であるMambaは、シーケンスモデリングタスクにおいてトランスフォーマー等価のパフォーマンスを達成した。
同じトレーニングレシピを持つトランスフォーマーベースモデルと比較して,Mambaモデルは競争性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-27T06:07:05Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
本稿では,MLLMの微細な画像理解能力を高めるための新しい枠組みを提案する。
本稿では,既存のデータセットのアノテーションを活用して,命令チューニングデータセットを低コストで構築する手法を提案する。
本研究では,Qwen-VLよりも5.2%精度が向上し,Kosmos-2の精度が24.7%向上したことを示す。
論文 参考訳(メタデータ) (2023-10-01T05:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。