論文の概要: PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2406.08444v1
- Date: Wed, 12 Jun 2024 17:34:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 15:37:29.048858
- Title: PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement
- Title(参考訳): PixMamba: 水中画像強調のためのデュアルレベルアーキテクチャにおける状態空間モデルの活用
- Authors: Wei-Tung Lin, Yong-Xiang Lin, Jyun-Wei Chen, Kai-Lung Hua,
- Abstract要約: 水中画像強調(UIE)は海洋調査や探査に重要であるが、複雑な色歪みと激しいぼやけによって妨げられている。
近年のディープラーニングに基づく手法は目覚ましい成果を上げているが、これらの手法は高い計算コストと不十分なグローバルモデリングに苦慮している。
我々は,ステートスペースモデル(SSM)を活用して,効率的なグローバル依存性モデリングを実現することにより,これらの課題を克服するために設計された新しいアーキテクチャであるPixMambaを提案する。
- 参考スコア(独自算出の注目度): 7.443057703389351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater Image Enhancement (UIE) is critical for marine research and exploration but hindered by complex color distortions and severe blurring. Recent deep learning-based methods have achieved remarkable results, yet these methods struggle with high computational costs and insufficient global modeling, resulting in locally under- or over- adjusted regions. We present PixMamba, a novel architecture, designed to overcome these challenges by leveraging State Space Models (SSMs) for efficient global dependency modeling. Unlike convolutional neural networks (CNNs) with limited receptive fields and transformer networks with high computational costs, PixMamba efficiently captures global contextual information while maintaining computational efficiency. Our dual-level strategy features the patch-level Efficient Mamba Net (EMNet) for reconstructing enhanced image feature and the pixel-level PixMamba Net (PixNet) to ensure fine-grained feature capturing and global consistency of enhanced image that were previously difficult to obtain. PixMamba achieves state-of-the-art performance across various underwater image datasets and delivers visually superior results. Code is available at: https://github.com/weitunglin/pixmamba.
- Abstract(参考訳): 水中画像強調(UIE)は海洋調査や探査に重要であるが、複雑な色歪みと激しいぼやけによって妨げられている。
近年のディープラーニングに基づく手法は目覚ましい成果を上げているが、これらの手法は高い計算コストと不十分なグローバルモデリングに苦しむため、局所的に過度に調整された領域や過度に調整された領域が生まれる。
我々は,ステートスペースモデル(SSM)を活用して,効率的なグローバル依存性モデリングを実現することにより,これらの課題を克服するために設計された新しいアーキテクチャであるPixMambaを提案する。
限られた受容場と高い計算コストのトランスフォーマーネットワークを持つ畳み込みニューラルネットワーク(CNN)とは異なり、PixMambaは計算効率を維持しながら、グローバルなコンテキスト情報を効率的に取得する。
我々のデュアルレベル戦略は、拡張画像の特徴を再構築するためのパッチレベル効率のMamba Net (EMNet) と、これまで入手が困難であった拡張画像の微細な特徴捕捉とグローバルな一貫性を確保するためのピクセルレベルPixMamba Net (PixNet) を特徴としている。
PixMambaは、さまざまな水中画像データセットにまたがって最先端のパフォーマンスを達成し、視覚的に優れた結果を提供する。
コードは、https://github.com/weitunglin/pixmamba.comで入手できる。
関連論文リスト
- A Lightweight and Effective Image Tampering Localization Network with Vision Mamba [5.369780585789917]
現在の画像改ざん手法は、畳み込みニューラルネットワーク(CNN)とトランスフォーマーに依存している。
視覚的マンバ(ForMa)をベースとした,視覚障害者の視覚的触覚ローカライゼーションのための軽量かつ効果的なフォレストネットワークを提案する。
論文 参考訳(メタデータ) (2025-02-14T06:35:44Z) - MatIR: A Hybrid Mamba-Transformer Image Restoration Model [95.17418386046054]
そこで我々は,MatIRと呼ばれるMamba-Transformerハイブリッド画像復元モデルを提案する。
MatIRはTransformer層とMamba層のブロックをクロスサイクルして特徴を抽出する。
Mambaモジュールでは、4つのスキャンパスに沿って横断するImage Inpainting State Space (IRSS)モジュールを導入する。
論文 参考訳(メタデータ) (2025-01-30T14:55:40Z) - Directing Mamba to Complex Textures: An Efficient Texture-Aware State Space Model for Image Restoration [75.51789992466183]
TAMAMbaIRは画像テクスチャの達成と性能と効率のトレードオフを同時に知覚する。
画像超解像, デラリニング, 低照度画像強調のためのベンチマーク実験により, TAMAMbaIRは高い効率で最先端の性能を達成できることを示した。
論文 参考訳(メタデータ) (2025-01-27T23:53:49Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Mamba-UIE: Enhancing Underwater Images with Physical Model Constraint [6.2101866921752285]
水中画像強調(UIE)では、畳み込みニューラルネットワーク(CNN)は長距離依存関係のモデリングに固有の制限がある。
本研究では,物理モデルによる制約に基づく水中画像強調フレームワークであるMamba-UIEを提案する。
提案したMamba-UIEは既存の最先端手法よりも優れており,PSNRは27.13で,SSIMは0.93である。
論文 参考訳(メタデータ) (2024-07-27T13:22:10Z) - MxT: Mamba x Transformer for Image Inpainting [11.447968918063335]
Image Inpaintingは、セマンティック・コヒーレントなコンテンツで画像の欠落した領域や破損した領域を復元することを目的としている。
本稿では,Mambaと変換器を組み合わせたHybrid Module (HM) を相乗的に構成したMxTを提案する。
我々のHMは、ピクセルレベルとパッチレベルの二重レベルの相互作用学習を容易にし、高品質で文脈的精度で画像を再構成するモデルを大幅に強化する。
論文 参考訳(メタデータ) (2024-07-23T02:21:11Z) - DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis [56.849285913695184]
Diffusion Mamba (DiM) は高分解能画像合成のためのシーケンスモデルである。
DiMアーキテクチャは高解像度画像の推論時間効率を実現する。
実験は、我々のDiMの有効性と効率を実証する。
論文 参考訳(メタデータ) (2024-05-23T06:53:18Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMambaはマルチスケール適応のためのウェーブレット変換特徴変調を統合する新しいフレームワークである。
IRSRMambaはPSNR、SSIM、知覚品質において最先端の手法より優れている。
この研究は、高忠実度赤外線画像強調のための有望な方向として、Mambaベースのアーキテクチャを確立する。
論文 参考訳(メタデータ) (2024-05-16T07:49:24Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
シングルイメージ超解像(SISR)は、ディープラーニングの統合によって大幅に進歩した。
本稿では,エッジ分割ピラミッドモジュール (ESPM) とパノラマ特徴抽出モジュール (PFEM) を調和して結合し,既存の手法の限界を克服する,EPNet (Efficient Pyramid Network) を提案する。
論文 参考訳(メタデータ) (2023-12-20T19:56:53Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。