MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction
- URL: http://arxiv.org/abs/2406.08649v2
- Date: Wed, 23 Oct 2024 15:29:28 GMT
- Title: MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction
- Authors: John Arevalo, Ellen Su, Anne E Carpenter, Shantanu Singh,
- Abstract summary: This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds.
We provide random, cold-source (new drugs) and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases.
Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone.
- Score: 0.29998889086656577
- License:
- Abstract: Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics and detecting mechanisms of action. While structure-based methods accurately model physical interactions between a drug and its protein target, cell-based assays such as Cell Painting can better capture complex DTI interactions. This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds, along with their relationships extracted from seven publicly available databases. We provide random, cold-source (new drugs), and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases. Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone, feature-based models, and topological heuristics. MOTIVE accelerates both graph ML research and drug discovery by promoting the development of more reliable DTI prediction models. MOTIVE resources are available at https://github.com/carpenter-singh-lab/motive.
Related papers
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
We formulate a model called MKDTI by extracting kernel information from various layer embeddings of a graph attention network.
We use a Dual Laplacian Regularized Least Squares framework to forecast novel drug-target entity connections.
arXiv Detail & Related papers (2024-07-14T02:53:25Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction [15.005837084219355]
We propose a hierarchical graph representation learning-based DTI prediction method (HiGraphDTI)
Specifically, HiGraphDTI learns hierarchical drug representations from triple-level molecular graphs to thoroughly exploit chemical information embedded in atoms, motifs, and molecules.
An attentional feature fusion module incorporates information from different receptive fields to extract expressive target features.
arXiv Detail & Related papers (2024-04-16T13:35:24Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
We propose a novel hierarchical graph representation learning model for the drug-target binding affinity prediction, namely HGRL-DTA.
In this paper, we adopt a message broadcasting mechanism to integrate the hierarchical representations learned from the global-level affinity graph and the local-level molecular graph. Besides, we design a similarity-based embedding map to solve the cold start problem of inferring representations for unseen drugs and targets.
arXiv Detail & Related papers (2022-03-22T04:50:16Z) - HampDTI: a heterogeneous graph automatic meta-path learning method for
drug-target interaction prediction [4.499861098235355]
We propose a heterogeneous graph automatic meta-path learning based DTI prediction method (HampDTI)
HampDTI automatically learns the important meta-paths between drugs and targets from the HN, and generates meta-path graphs.
Experiments on benchmark datasets show that our proposed HampDTI achieves superior performance compared with state-of-the-art DTI prediction methods.
arXiv Detail & Related papers (2021-12-16T02:12:03Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions.
DTI-GAT incorporates a deep network neural architecture that operates on graph-structured data with the attention mechanism.
Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem.
arXiv Detail & Related papers (2021-07-10T07:06:36Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.