論文の概要: Enhancing Psychotherapy Counseling: A Data Augmentation Pipeline Leveraging Large Language Models for Counseling Conversations
- arxiv url: http://arxiv.org/abs/2406.08718v1
- Date: Thu, 13 Jun 2024 00:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:47:58.741513
- Title: Enhancing Psychotherapy Counseling: A Data Augmentation Pipeline Leveraging Large Language Models for Counseling Conversations
- Title(参考訳): 心理療法のコウンセリングの強化:コーウンセリングのための大規模言語モデルを活用したデータ拡張パイプライン
- Authors: Jun-Woo Kim, Ji-Eun Han, Jun-Seok Koh, Hyeon-Tae Seo, Du-Seong Chang,
- Abstract要約: 本稿では,Large Language Models (LLMs) を利用して,シングルターン精神療法のカウンセリングセッションをマルチターンインタラクションに変換するパイプラインを提案する。
我々のアプローチは、メンタルヘルスカウンセリングの文脈において、高い品質のマルチターン対話を実現するLLMの能力を大幅に向上させる。
- 参考スコア(独自算出の注目度): 1.0286011319699866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a pipeline that leverages Large Language Models (LLMs) to transform single-turn psychotherapy counseling sessions into multi-turn interactions. While AI-supported online counseling services for individuals with mental disorders exist, they are often constrained by the limited availability of multi-turn training datasets and frequently fail to fully utilize therapists' expertise. Our proposed pipeline effectively addresses these limitations. The pipeline comprises two main steps: 1) Information Extraction and 2) Multi-turn Counseling Generation. Each step is meticulously designed to extract and generate comprehensive multi-turn counseling conversations from the available datasets. Experimental results from both zero-shot and few-shot generation scenarios demonstrate that our approach significantly enhances the ability of LLMs to produce higher quality multi-turn dialogues in the context of mental health counseling. Our pipeline and dataset are publicly available https://github.com/jwkim-chat/A-Data-Augmentation-Pipeline-Leveraging-Large-Language-Models-for-Coun seling-Conversations.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を利用して,シングルターン精神療法のカウンセリングセッションをマルチターンインタラクションに変換するパイプラインを提案する。
AIが支援する精神障害のある個人のためのオンラインカウンセリングサービスは存在するが、多ターントレーニングデータセットの可用性が制限されているため、セラピストの専門知識を十分に活用できないことが多い。
提案するパイプラインは,これらの制限を効果的に対処する。
パイプラインには2つの主要なステップがある。
1【情報抽出】
2)マルチターンカウンセリング生成
各ステップは、利用可能なデータセットから包括的なマルチターンカウンセリング会話を抽出し、生成するように慎重に設計されている。
ゼロショット, 少数ショットの両シナリオによる実験結果から, メンタルヘルスカウンセリングの文脈において, LLMが高品質なマルチターン対話を実現する能力を大幅に向上することが示された。
パイプラインとデータセットは公開されています。https://github.com/jwkim-chat/A-Data-Augmentation-Pipeline-Leveraging-Language-Language-Models-for-C ounseling-Conversations。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Optimizing Psychological Counseling with Instruction-Tuned Large Language Models [9.19192059750618]
本稿では,心理カウンセリングにおける大規模言語モデル(LLM)の適用について検討する。
本稿では,共感的,関連性,支援的な応答を提供することで,特定のプロンプトを持つLLMを指導し,その性能を高める方法を提案する。
論文 参考訳(メタデータ) (2024-06-19T15:13:07Z) - Conversational Topic Recommendation in Counseling and Psychotherapy with Decision Transformer and Large Language Models [17.236038165057817]
我々は、会話のカウンセリングにおいてトピックレコメンデーションに決定トランスフォーマーアーキテクチャを利用する。
アーキテクチャはオフラインの強化学習に利用される。
本稿では,大言語モデルを微調整するための合成ラベルとして,我々のモデル出力を利用する新しいシステムを提案する。
論文 参考訳(メタデータ) (2024-05-08T13:55:25Z) - Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts [4.403408362362806]
本稿では,対話型対話による精神科的意思決定支援のための大規模言語モデルを文脈化するための,対話型連鎖促進手法を提案する。
このアプローチにより、大規模言語モデルでは、患者の行動コーディングのためのコーディングスキーム、患者の状態、およびドメイン知識を活用することができる。
論文 参考訳(メタデータ) (2024-03-20T17:47:49Z) - Harnessing Large Language Models' Empathetic Response Generation
Capabilities for Online Mental Health Counselling Support [1.9336815376402723]
大規模言語モデル(LLM)は、様々な情報検索や推論タスクで顕著なパフォーマンスを示している。
本研究は,メンタルヘルスカウンセリング環境下での会話において,共感反応を誘発するLLMの能力について検討した。
我々は、ジェネレーティブ・プレトレーニング(GPT)のバージョン3.5とバージョン4、Vicuna FastChat-T5、Pathways Language Model(PaLM)バージョン2、Falcon-7B-Instructの5つのLCMを選択した。
論文 参考訳(メタデータ) (2023-10-12T03:33:06Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Response-act Guided Reinforced Dialogue Generation for Mental Health
Counseling [25.524804770124145]
本稿では、メンタルヘルスカウンセリング会話のための対話行動誘導応答生成器READERについて述べる。
READERは変換器上に構築されており、次の発話に対する潜在的な対話行為d(t+1)を共同で予測し、適切な応答u(t+1)を生成する。
ベンチマークカウンセリング会話データセットであるHOPE上でREADERを評価する。
論文 参考訳(メタデータ) (2023-01-30T08:53:35Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
我々は、欧州連合の一般データプライバシ規則の下で、精神医学クリニックでセラピストと患者との対話の収集を始める際に直面した課題について詳しく述べる。
本稿では、手順の各ステップの概要を述べ、この分野でのさらなる研究を動機付ける潜在的な落とし穴を指摘した。
論文 参考訳(メタデータ) (2022-11-22T15:51:10Z) - Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue
System [120.70726465994781]
マルチモーダル音声対話システムにより、電話ベースのエージェントが、人間のような顧客と対話できる。
製品で学んだ教訓を共有するために、Conversation Duplex Alibabaのインテリジェントなカスタマサービスをデプロイしています。
オンラインA/B実験は,提案システムにおいて応答遅延を50%低減できることを示した。
論文 参考訳(メタデータ) (2022-05-30T12:41:23Z) - Smoothing Dialogue States for Open Conversational Machine Reading [70.83783364292438]
本稿では,2つの対話状態を1つのデコーダとブリッジ決定と質問生成でスムーズにすることで,効果的なゲーティング戦略を提案する。
OR-ShARCデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-08-28T08:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。