Asymptotic Birkhoff-Violation in Operational Theories: Thermodynamic Implications and Information Processing
- URL: http://arxiv.org/abs/2406.08803v1
- Date: Thu, 13 Jun 2024 04:38:43 GMT
- Title: Asymptotic Birkhoff-Violation in Operational Theories: Thermodynamic Implications and Information Processing
- Authors: Ananya Chakraborty, Sahil Gopalkrishna Naik, Samrat Sen, Ram Krishna Patra, Pratik Ghosal, Mir Alimuddin, Manik Banik,
- Abstract summary: Renowned Birkhoff-von Neumann theorem identifies source of randomness to be the application of reversible operations on the system under study.
Here, we extend this investigation beyond quantum mechanics to a broader class of operational theories described within the framework of general probabilistic theories.
We show that Birkhoff-violation in GPTs can lead to consequences that are atypical to quantum theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In accordance with the entropy principle of thermodynamics, under spontaneous evolutions, physical systems always evolve towards states with equal or greater randomness. But, where does this randomness originate? Renowned Birkhoff-von Neumann theorem, often referred to as Birkhoff theorem, identifies source of this randomness to be the stochastic application of reversible operations on the system under study, thereby ensuring its epistemic origin. Analogue of this theorem is known to fail in the quantum case. Here, we extend this investigation beyond quantum mechanics to a broader class of operational theories described within the framework of general probabilistic theories (GPTs). In this generalized framework, we establish Birkhoff-violation as the prevalent trait; in fact the asymptotic variant of the theorem gets violated. We then demonstrate that Birkhoff-violation in GPTs can lead to consequences that are atypical to quantum theory. For instance, we report manifestation of Birkhoff-violation in a communication task, which otherwise is not observed in quantum world. We also show that, unlike the quantum case, in other operational theories the state transformation criteria can be distinct under mixtures of reversible transformations and doubly stochastic evolutions, leading to different resource theories of purity. Despite these exotic implications, we analyze how to define a coherent notion of entropy in this generalized framework, while upholding alignment with von Neumann's thought experiment.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Ergodic repeated interaction quantum systems: Steady states and reducibility theory [0.0]
We consider the time evolution of an open quantum system subject to a sequence of random quantum channels with a stationary distribution.
Various specific models of disorder in repeated interaction models have been considered.
We develop a reducarity theory for general stationary random repeated interaction models without this condition.
arXiv Detail & Related papers (2024-06-16T15:38:20Z) - On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum dissipation and the virial theorem [22.1682776279474]
We study the celebrated virial theorem for dissipative systems, both classical and quantum.
The non-Markovian nature of the quantum noise leads to novel bath-induced terms in the virial theorem.
We also consider the case of an electrical circuit with thermal noise and analyze the role of non-Markovian noise in the context of the virial theorem.
arXiv Detail & Related papers (2023-02-23T13:28:11Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - A quantum fluctuation theorem for any Lindblad master equation [0.0]
We present a general quantum fluctuation theorem for the entropy production of an open quantum system coupled to multiple environments.
The theorem is genuinely quantum, as it can be expressed in terms of conservation of a Hermitian operator.
We show that the fluctuation theorem amounts to a relation between time-reversed dynamics of the global density matrix and a two-time correlation function.
arXiv Detail & Related papers (2021-08-12T19:28:38Z) - Emergence of Constructor-based Irreversibility in Quantum Systems:
Theory and Experiment [0.0]
We show that irreversibility in a universe with time-reversal-symmetric laws is compatible with quantum theory's time reversal symmetric laws.
We exploit a specific model, based on the universal quantum homogeniser, realised experimentally with high-quality single-photon qubits.
arXiv Detail & Related papers (2020-09-30T12:57:39Z) - Theory of Ergodic Quantum Processes [0.0]
We consider general ergodic sequences of quantum channels with arbitrary correlations and non-negligible decoherence.
We compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy can be computed exactly.
Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned.
arXiv Detail & Related papers (2020-04-29T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.