論文の概要: Research on Deep Learning Model of Feature Extraction Based on Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2406.08837v1
- Date: Thu, 13 Jun 2024 06:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:08:42.580820
- Title: Research on Deep Learning Model of Feature Extraction Based on Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークに基づく特徴抽出の深層学習モデルに関する研究
- Authors: Houze Liu, Iris Li, Yaxin Liang, Dan Sun, Yining Yang, Haowei Yang,
- Abstract要約: AlexNetとInceptionV3はより優れた画像認識結果を得るために選択された。
トレーニングされたAlexNetモデルの予測精度、特異性、感度は4.25ポイント向上した。
グラフィックス処理の使用率は、InceptionV3モードと比較して51%減少した。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks with relatively shallow layers and simple structures may have limited ability in accurately identifying pneumonia. In addition, deep neural networks also have a large demand for computing resources, which may cause convolutional neural networks to be unable to be implemented on terminals. Therefore, this paper will carry out the optimal classification of convolutional neural networks. Firstly, according to the characteristics of pneumonia images, AlexNet and InceptionV3 were selected to obtain better image recognition results. Combining the features of medical images, the forward neural network with deeper and more complex structure is learned. Finally, knowledge extraction technology is used to extract the obtained data into the AlexNet model to achieve the purpose of improving computing efficiency and reducing computing costs. The results showed that the prediction accuracy, specificity, and sensitivity of the trained AlexNet model increased by 4.25 percentage points, 7.85 percentage points, and 2.32 percentage points, respectively. The graphics processing usage has decreased by 51% compared to the InceptionV3 mode.
- Abstract(参考訳): 比較的浅い層と単純な構造を持つニューラルネットワークは、肺炎を正確に識別する能力に制限がある可能性がある。
さらに、ディープニューラルネットワークはコンピューティングリソースに対する大きな需要があり、畳み込みニューラルネットワークが端末上で実装できない可能性がある。
そこで本稿では,畳み込みニューラルネットワークの最適分類を行う。
まず, 肺炎画像の特徴として, AlexNet と InceptionV3 が選択され, 画像認識の精度が向上した。
医用画像の特徴を組み合わせることで、より深く複雑な構造を持つフォワードニューラルネットワークが学習される。
最後に、知識抽出技術を用いて、取得したデータをAlexNetモデルに抽出し、計算効率の向上と計算コストの削減を図る。
その結果、トレーニングされたAlexNetモデルの予測精度、特異性、感度は、それぞれ4.25ポイント、7.85ポイント、および2.32ポイント増加した。
グラフィックス処理の使用率は、InceptionV3モードと比較して51%減少した。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンアプリケーションにおいて大きな優位性を示している。
ここでは、主に2つの畳み込みニューラルネットワーク層を使用し、比較的少ないパラメータと高速で脳波からスペクトル時間的特徴を学習する浅層ニューラルネットワークを提案する。
実験の結果、浅いCNNモデルは他の全てのモデルより優れており、最高分類精度は90.68%に達した。
論文 参考訳(メタデータ) (2022-09-26T02:15:22Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
深部畳み込みニューラルネットワークにおける平均2乗誤差解析について考察する。
付加的なリッジ関数に対しては、畳み込みニューラルネットワークとReLUアクティベーション関数を併用した1つの完全連結層が最適極小値に到達できることが示される。
論文 参考訳(メタデータ) (2022-02-24T14:22:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - ResPerfNet: Deep Residual Learning for Regressional Performance Modeling
of Deep Neural Networks [0.16311150636417257]
本稿では,ディープラーニングに基づくResPerfNetを提案する。この手法は,ニューラルネットワークの性能を予測するために,対象プラットフォーム上で得られた代表データセットを用いて残差ニューラルネットワークをトレーニングする。
実験の結果,ResPerfNetは個々のニューラルネットワーク層と,さまざまなプラットフォーム上でのフルネットワークモデルの実行時間を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2020-12-03T03:02:42Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
U-Netニューラルネットワークは、完全な畳み込みニューラルネットワークよりも正確に解剖学的基準点の検出を可能にする。
U-Net ニューラルネットワークによる解剖学的基準点検出の結果は,歯科矯正医のグループによる基準点検出の平均値に近づいた。
論文 参考訳(メタデータ) (2020-05-25T13:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。