Zoom and Shift are All You Need
- URL: http://arxiv.org/abs/2406.08866v1
- Date: Thu, 13 Jun 2024 07:09:41 GMT
- Title: Zoom and Shift are All You Need
- Authors: Jiahao Qin,
- Abstract summary: We propose a feature alignment approach that achieves full integration of multimodal information.
The proposed technique can reliably capture high-level interplay between features originating from distinct modalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Feature alignment serves as the primary mechanism for fusing multimodal data. We put forth a feature alignment approach that achieves full integration of multimodal information. This is accomplished via an alternating process of shifting and expanding feature representations across modalities to obtain a consistent unified representation in a joint feature space. The proposed technique can reliably capture high-level interplay between features originating from distinct modalities. Consequently, substantial gains in multimodal learning performance are attained. Additionally, we demonstrate the superiority of our approach over other prevalent multimodal fusion schemes on a range of tasks. Extensive experimental evaluation conducted on multimodal datasets comprising time series, image, and text demonstrates that our method achieves state-of-the-art results.
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations [19.731611716111566]
We propose a Multimodal fusion approach for learning modality-Exclusive and modality-Agnostic representations.
We introduce a predictive self-attention module to capture reliable context dynamics within modalities.
A hierarchical cross-modal attention module is designed to explore valuable element correlations among modalities.
A double-discriminator strategy is presented to ensure the production of distinct representations in an adversarial manner.
arXiv Detail & Related papers (2024-07-06T04:36:48Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Multimodal Information Interaction for Medical Image Segmentation [24.024848382458767]
We introduce an innovative Multimodal Information Cross Transformer (MicFormer)
It queries features from one modality and retrieves corresponding responses from another, facilitating effective communication between bimodal features.
Compared to other multimodal segmentation techniques, our method outperforms by margins of 2.83 and 4.23, respectively.
arXiv Detail & Related papers (2024-04-25T07:21:14Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Alternative Telescopic Displacement: An Efficient Multimodal Alignment Method [3.0903319879656084]
This paper introduces an innovative approach to feature alignment that revolutionizes the fusion of multimodal information.
Our method employs a novel iterative process of telescopic displacement and expansion of feature representations across different modalities, culminating in a coherent unified representation within a shared feature space.
arXiv Detail & Related papers (2023-06-29T13:49:06Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
We propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis.
Our model outperforms existing approaches on unaligned multimodal sequences and has strong performance on aligned multimodal sequences.
arXiv Detail & Related papers (2022-06-16T07:47:57Z) - AttX: Attentive Cross-Connections for Fusion of Wearable Signals in
Emotion Recognition [15.21696076393078]
Cross-modal attentive connections is a new dynamic and effective technique for multimodal representation learning from wearable data.
We perform extensive experiments on three public multimodal wearable datasets, WESAD, SWELL-KW, and CASE.
Our method can result in superior or competitive performance to state-of-the-art and outperform a variety of baseline uni-modal and classical multimodal methods.
arXiv Detail & Related papers (2022-06-09T17:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.