Polynomial Reduction Methods and their Impact on QAOA Circuits
- URL: http://arxiv.org/abs/2406.08889v1
- Date: Thu, 13 Jun 2024 07:43:18 GMT
- Title: Polynomial Reduction Methods and their Impact on QAOA Circuits
- Authors: Lukas Schmidbauer, Karen Wintersperger, Elisabeth Lobe, Wolfgang Mauerer,
- Abstract summary: We show how higher-order problem formulations can be used to leverage different desired non-functional properties for quantum optimisation.
Our study shows that the approach allows us to satisfy different trade-offs, and suggests various possibilities for the future construction of general-purpose abstractions.
- Score: 2.4588375162098877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstraction layers are of paramount importance in software architecture, as they shield the higher-level formulation of payload computations from lower-level details. Since quantum computing (QC) introduces many such details that are often unaccustomed to computer scientists, an obvious desideratum is to devise appropriate abstraction layers for QC. For discrete optimisation, one such abstraction is to cast problems in quadratic unconstrained binary optimisation (QUBO) form, which is amenable to a variety of quantum approaches. However, different mathematically equivalent forms can lead to different behaviour on quantum hardware, ranging from ease of mapping onto qubits to performance scalability. In this work, we show how using higher-order problem formulations (that provide better expressivity in modelling optimisation tasks than plain QUBO formulations) and their automatic transformation into QUBO form can be used to leverage such differences to prioritise between different desired non-functional properties for quantum optimisation. Our quantitative study shows that the approach allows us to satisfy different trade-offs, and suggests various possibilities for the future construction of general-purpose abstractions and automatic generation of useful quantum circuits from high-level problem descriptions.
Related papers
- Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
We introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for gradient-type cost functions.
Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning.
arXiv Detail & Related papers (2024-09-30T07:50:47Z) - Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Approximating under the Influence of Quantum Noise and Compute Power [3.0302054726041017]
The quantum approximate optimisation algorithm (QAOA) is at the core of many scenarios that aim to combine the power of quantum computers and classical high-performance computing appliances for optimisation.
We study factors that affect solution quality and temporal behaviour of four QAOA variants using comprehensive density-matrix-based simulations.
Our results, accompanied by a comprehensive reproduction package, show strong differences between QAOA variants that can be pinpointed to narrow and specific effects.
arXiv Detail & Related papers (2024-08-05T07:48:49Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Copula-based Risk Aggregation with Trapped Ion Quantum Computers [1.541403735141431]
Copulas are mathematical tools for modeling joint probability distributions.
Recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages.
We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer.
arXiv Detail & Related papers (2022-06-23T18:39:30Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Adiabatic Quantum Computing for Solving the Weapon-Target Assignment
Problem [0.0]
Recent technological advancements suggest that the adiabatic quantum computing ansatz may soon see practical applications.
In this work, we adopt this computation paradigm to develop a quantum computation based solver of the well-known weapon target assignment problem.
arXiv Detail & Related papers (2021-05-05T12:16:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.