論文の概要: ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability
- arxiv url: http://arxiv.org/abs/2406.09046v1
- Date: Tue, 11 Jun 2024 17:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:05:18.591860
- Title: ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability
- Title(参考訳): ExioML:グローバルセクタサステナビリティにおける機械学習のためのエコエコノミクスデータセット
- Authors: Yanming Guo, Jin Ma,
- Abstract要約: 本稿では,サステナビリティ分析用に設計された最初の機械学習ベンチマークデータセットであるExioMLを紹介する。
セクターサステナビリティを評価し,データセットのユーザビリティを実証するために,温室効果ガスのレグレッションタスクを実施した。
- 参考スコア(独自算出の注目度): 13.40312752203046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Environmental Extended Multi-Regional Input-Output analysis is the predominant framework in Ecological Economics for assessing the environmental impact of economic activities. This paper introduces ExioML, the first Machine Learning benchmark dataset designed for sustainability analysis, aimed at lowering barriers and fostering collaboration between Machine Learning and Ecological Economics research. A crucial greenhouse gas emission regression task was conducted to evaluate sectoral sustainability and demonstrate the usability of the dataset. We compared the performance of traditional shallow models with deep learning models, utilizing a diverse Factor Accounting table and incorporating various categorical and numerical features. Our findings reveal that ExioML, with its high usability, enables deep and ensemble models to achieve low mean square errors, establishing a baseline for future Machine Learning research. Through ExioML, we aim to build a foundational dataset supporting various Machine Learning applications and promote climate actions and sustainable investment decisions.
- Abstract(参考訳): 環境拡張多段階インプット・アウトプット分析は、経済活動の環境影響を評価するための生態経済学の主要な枠組みである。
本稿では,持続可能性分析のための最初の機械学習ベンチマークデータセットであるExioMLを紹介する。
セクターサステナビリティを評価し,データセットのユーザビリティを実証するために,温室効果ガスのレグレッションタスクを実施した。
従来の浅層モデルと深層学習モデルを比較し,因子会計表を多用し,分類的・数値的特徴を取り入れた。
この結果から,ExioMLはユーザビリティが高く,深層およびアンサンブルモデルによる平均二乗誤差の低減を可能にし,将来の機械学習研究のベースラインを確立した。
ExioMLを通じて、さまざまな機械学習アプリケーションをサポートする基盤データセットを構築し、気候変動対策と持続可能な投資決定を促進することを目指している。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Unveiling Environmental Impacts of Large Language Model Serving: A Functional Unit View [2.5832043241251337]
大規模言語モデル(LLM)は強力な能力を提供するが、特に二酸化炭素の排出において、環境コストがかなり高い。
機能ユニット (FU) の概念を導入し, LLM の環境影響を評価するための FU ベースのフレームワークである FUEL を開発した。
本研究は, モデル選択, 展開戦略, ハードウェア選択を最適化することにより, 二酸化炭素排出量削減の可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T20:20:18Z) - REO-VLM: Transforming VLM to Meet Regression Challenges in Earth Observation [58.91579272882073]
本稿では,地球観測領域に特有な回帰・生成タスクを統合するために,textbfREO-Instructと呼ばれる新しいベンチマークデータセットを提案する。
我々は,回帰機能を従来の生成関数とシームレスに統合する基盤モデルであるtextbfREO-VLM を開発した。
論文 参考訳(メタデータ) (2024-12-21T11:17:15Z) - Enhancing Ecological Monitoring with Multi-Objective Optimization: A Novel Dataset and Methodology for Segmentation Algorithms [17.802456388479616]
オーストラリア, ニューサウスウェールズ州ベガバレーで, 外来種および外来種を捉えた6,096個の高分解能空中画像のユニークなセマンティックセマンティックセマンティクスデータセットを導入した。
このデータセットは、草種の重複と分布のため、困難な課題を示す。
データセットとコードは公開され、コンピュータビジョン、機械学習、生態学の研究を促進することを目的としている。
論文 参考訳(メタデータ) (2024-07-25T18:27:27Z) - Tree-based variational inference for Poisson log-normal models [47.82745603191512]
階層木は、しばしば近接基準に基づいてエンティティを組織するために使用される。
現在のカウントデータモデルは、この構造化情報を利用していない。
本稿では,PLNモデルの拡張としてPLN-Treeモデルを導入し,階層的カウントデータをモデル化する。
論文 参考訳(メタデータ) (2024-06-25T08:24:35Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
機械学習(ML)は大きな進歩を遂げているが、その環境のフットプリントは依然として懸念されている。
本稿では,グリーンMLの環境影響の増大を認め,グリーンMLについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:59:34Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Analysis of Biomass Sustainability Indicators from a Machine Learning
Perspective [4.129067364486898]
本研究では,機械学習モデルを用いてサステナビリティ指標を解析し,バイオマスのサステナビリティ予測のためのロバストモデルを提案する。
10種類の機械学習モデルを用いて, バイオマス持続可能性指標, 土壌浸食因子, 土壌条件指標, 有機物因子を推定した。
その結果,サステナビリティ指標を評価する上では,ランダムフォレストが最も優れたモデルであることが示唆された。
論文 参考訳(メタデータ) (2023-02-02T02:31:42Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。