論文の概要: A Survey of Foundation Models for Environmental Science
- arxiv url: http://arxiv.org/abs/2503.03142v1
- Date: Wed, 05 Mar 2025 03:33:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:40.752426
- Title: A Survey of Foundation Models for Environmental Science
- Title(参考訳): 環境科学の基礎モデルに関する調査
- Authors: Runlong Yu, Shengyu Chen, Yiqun Xie, Xiaowei Jia,
- Abstract要約: ファンデーションモデルは、多様なデータソースを統合することによって、変革的な機会を提供する。
我々は、学際的なコラボレーションを促進し、環境科学における持続可能なソリューションのための最先端の機械学習の統合を促進することを目的としている。
- 参考スコア(独自算出の注目度): 16.426772639157704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling environmental ecosystems is essential for effective resource management, sustainable development, and understanding complex ecological processes. However, traditional methods frequently struggle with the inherent complexity, interconnectedness, and limited data of such systems. Foundation models, with their large-scale pre-training and universal representations, offer transformative opportunities by integrating diverse data sources, capturing spatiotemporal dependencies, and adapting to a broad range of tasks. This survey presents a comprehensive overview of foundation model applications in environmental science, highlighting advancements in forward prediction, data generation, data assimilation, downscaling, model ensembling, and decision-making across domains. We also detail the development process of these models, covering data collection, architecture design, training, tuning, and evaluation. By showcasing these emerging methods, we aim to foster interdisciplinary collaboration and advance the integration of cutting-edge machine learning for sustainable solutions in environmental science.
- Abstract(参考訳): 環境生態系のモデリングは、効率的な資源管理、持続可能な開発、複雑な生態プロセスの理解に不可欠である。
しかし、従来の手法は、そのようなシステムの固有の複雑さ、相互接続性、限られたデータにしばしば苦労する。
大規模な事前トレーニングと普遍的な表現を備えたファンデーションモデルは、多様なデータソースを統合し、時空間依存をキャプチャし、幅広いタスクに適応することで、変革的な機会を提供する。
本調査では, 環境科学における基礎モデル適用の概要を概観し, 先進予測, データ生成, データ同化, ダウンスケーリング, モデルエンハンブル, ドメイン間の意思決定の進展に注目した。
データ収集やアーキテクチャ設計,トレーニング,チューニング,評価など,これらのモデルの開発プロセスについても詳しく説明します。
これらの手法を実証することにより、学際的なコラボレーションを促進し、環境科学における持続可能なソリューションのための最先端の機械学習の統合を促進することを目指している。
関連論文リスト
- On the workflow, opportunities and challenges of developing foundation model in geophysics [9.358947092397052]
本稿では,地球物理データと連動して基礎モデルを開発する過程を体系的に検討する。
物理データの多様性,複雑性,物理的整合性の制約を考慮すると,対象とする解について論じる。
本稿では,基礎モデルの伝達学習能力を活用してラベル付きデータへの依存を減らし,計算効率を向上し,物理的制約をモデルトレーニングに組み込む方法について論じる。
論文 参考訳(メタデータ) (2025-04-24T09:08:24Z) - A Comprehensive Survey of Synthetic Tabular Data Generation [27.112327373017457]
タブラルデータ(Tabular data)は、様々な現実世界のアプリケーションにまたがる最も一般的かつ重要なデータフォーマットの1つである。
データ不足、プライバシーの懸念、クラス不均衡といった問題によって制約されることが多い。
合成データ生成は、生成モデルを利用して実際のデータセットの分布を学習する、有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2025-04-23T08:33:34Z) - Foundation Models for Environmental Science: A Survey of Emerging Frontiers [27.773985216421394]
本調査は,環境科学における基礎的応用の概要を概観する。
これは、フォワード予測、データ生成、データ同化、ダウンスケーリング、逆モデリング、モデルエンハンブル、ドメイン間の意思決定など、一般的な環境ユースケースにおける進歩を強調している。
我々は、重要な環境問題に対処する上での発見を促進するために、機械学習の進歩を加速する学際的なコラボレーションを促進することを目的としている。
論文 参考訳(メタデータ) (2025-04-05T20:56:38Z) - Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
時系列解析は複雑なシステムの力学を理解するために重要である。
基本モデルの最近の進歩はタスク非依存の時系列基礎モデル (TSFM) と大規模言語モデルベース時系列モデル (TSLLM) につながっている。
彼らの成功は、規制、多様性、品質、量制約のために構築が困難である、大規模で多様で高品質なデータセットに依存する。
本調査では,TSFMとTLLLMの合成データの総合的なレビュー,データ生成戦略の分析,モデル事前学習におけるそれらの役割,微調整,評価,今後の研究方向性の特定について述べる。
論文 参考訳(メタデータ) (2025-03-14T13:53:46Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Trajectory World Models for Heterogeneous Environments [67.27233466954814]
環境を横断するセンサーやアクチュエータの不均一性は、大規模な事前訓練された世界モデルを構築する上で大きな課題となる。
我々は80の環境から100万以上のトラジェクトリからなる統一データセットUniTrajを紹介した。
本稿では,様々なセンサやアクチュエータ情報を柔軟に処理し,環境ダイナミクスをコンテキスト内で捉えることのできる,新しいアーキテクチャであるTrajWorldを提案する。
論文 参考訳(メタデータ) (2025-02-03T13:59:08Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Predictive Pattern Recognition Techniques Towards Spatiotemporal Representation of Plant Growth in Simulated and Controlled Environments: A Comprehensive Review [0.0]
本稿では,最先端の予測パターン認識技術について概説する。
植物形質の確率論的モデリングと動的環境相互作用の統合に着目した。
主なトピックは、予測タスクのための回帰とニューラルネットワークベースの表現モデルだ。
論文 参考訳(メタデータ) (2024-12-13T20:22:35Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Research on the Spatial Data Intelligent Foundation Model [70.47828328840912]
本報告では、これらのモデルの原理、手法、最先端の応用を探求する、空間データインテリジェントな大規模モデルに焦点を当てる。
これは、空間データインテリジェントな大規模モデルの定義、開発履歴、現状、およびトレンドに関する詳細な議論を提供する。
本報告では, 都市環境, 航空宇宙リモートセンシング, 地理, 交通, その他のシナリオにおける空間データ知能大規模モデルの重要技術とその応用を体系的に解明する。
論文 参考訳(メタデータ) (2024-05-30T06:21:34Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
本研究では,事前学習された大規模言語モデル(LLM)を活用する可能性について検討する。
推論コアとしてChatGPT APIを採用することで、自然言語処理、メソノロジーベースのプロンプトチューニング、トランスフォーマーを含む統合ワークフローを概説する。
我々の方法論の成果は、広く採用されているオントロジー言語(OWL、RDF、SPARQLなど)の知識グラフである。
論文 参考訳(メタデータ) (2024-05-29T16:40:31Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
持続可能な開発成果を理解するために衛星画像を用いた成長する文献を合成する。
我々は、重要な人間関係の結果と、衛星画像の量の増大と解像度について、地上データの質を定量化する。
不足およびノイズの多いトレーニングデータの観点から、モデル構築に対する最近の機械学習アプローチをレビューする。
論文 参考訳(メタデータ) (2020-09-23T05:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。