論文の概要: A Survey of Foundation Models for Environmental Science
- arxiv url: http://arxiv.org/abs/2503.03142v1
- Date: Wed, 05 Mar 2025 03:33:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:38.927461
- Title: A Survey of Foundation Models for Environmental Science
- Title(参考訳): 環境科学の基礎モデルに関する調査
- Authors: Runlong Yu, Shengyu Chen, Yiqun Xie, Xiaowei Jia,
- Abstract要約: ファンデーションモデルは、多様なデータソースを統合することによって、変革的な機会を提供する。
我々は、学際的なコラボレーションを促進し、環境科学における持続可能なソリューションのための最先端の機械学習の統合を促進することを目的としている。
- 参考スコア(独自算出の注目度): 16.426772639157704
- License:
- Abstract: Modeling environmental ecosystems is essential for effective resource management, sustainable development, and understanding complex ecological processes. However, traditional methods frequently struggle with the inherent complexity, interconnectedness, and limited data of such systems. Foundation models, with their large-scale pre-training and universal representations, offer transformative opportunities by integrating diverse data sources, capturing spatiotemporal dependencies, and adapting to a broad range of tasks. This survey presents a comprehensive overview of foundation model applications in environmental science, highlighting advancements in forward prediction, data generation, data assimilation, downscaling, model ensembling, and decision-making across domains. We also detail the development process of these models, covering data collection, architecture design, training, tuning, and evaluation. By showcasing these emerging methods, we aim to foster interdisciplinary collaboration and advance the integration of cutting-edge machine learning for sustainable solutions in environmental science.
- Abstract(参考訳): 環境生態系のモデリングは、効率的な資源管理、持続可能な開発、複雑な生態プロセスの理解に不可欠である。
しかし、従来の手法は、そのようなシステムの固有の複雑さ、相互接続性、限られたデータにしばしば苦労する。
大規模な事前トレーニングと普遍的な表現を備えたファンデーションモデルは、多様なデータソースを統合し、時空間依存をキャプチャし、幅広いタスクに適応することで、変革的な機会を提供する。
本調査では, 環境科学における基礎モデル適用の概要を概観し, 先進予測, データ生成, データ同化, ダウンスケーリング, モデルエンハンブル, ドメイン間の意思決定の進展に注目した。
データ収集やアーキテクチャ設計,トレーニング,チューニング,評価など,これらのモデルの開発プロセスについても詳しく説明します。
これらの手法を実証することにより、学際的なコラボレーションを促進し、環境科学における持続可能なソリューションのための最先端の機械学習の統合を促進することを目指している。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Trajectory World Models for Heterogeneous Environments [67.27233466954814]
環境を横断するセンサーやアクチュエータの不均一性は、大規模な事前訓練された世界モデルを構築する上で大きな課題となる。
我々は80の環境から100万以上のトラジェクトリからなる統一データセットUniTrajを紹介した。
本稿では,様々なセンサやアクチュエータ情報を柔軟に処理し,環境ダイナミクスをコンテキスト内で捉えることのできる,新しいアーキテクチャであるTrajWorldを提案する。
論文 参考訳(メタデータ) (2025-02-03T13:59:08Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Predictive Pattern Recognition Techniques Towards Spatiotemporal Representation of Plant Growth in Simulated and Controlled Environments: A Comprehensive Review [0.0]
本稿では,最先端の予測パターン認識技術について概説する。
植物形質の確率論的モデリングと動的環境相互作用の統合に着目した。
主なトピックは、予測タスクのための回帰とニューラルネットワークベースの表現モデルだ。
論文 参考訳(メタデータ) (2024-12-13T20:22:35Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
ファンデーションモデル開発は、急速に成長するコントリビュータ、科学者、アプリケーションを引き付けている。
責任ある開発プラクティスを形成するために、我々はFoundation Model Development Cheatsheetを紹介します。
論文 参考訳(メタデータ) (2024-06-24T15:55:49Z) - Research on the Spatial Data Intelligent Foundation Model [70.47828328840912]
本報告では、これらのモデルの原理、手法、最先端の応用を探求する、空間データインテリジェントな大規模モデルに焦点を当てる。
これは、空間データインテリジェントな大規模モデルの定義、開発履歴、現状、およびトレンドに関する詳細な議論を提供する。
本報告では, 都市環境, 航空宇宙リモートセンシング, 地理, 交通, その他のシナリオにおける空間データ知能大規模モデルの重要技術とその応用を体系的に解明する。
論文 参考訳(メタデータ) (2024-05-30T06:21:34Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
本研究では,事前学習された大規模言語モデル(LLM)を活用する可能性について検討する。
推論コアとしてChatGPT APIを採用することで、自然言語処理、メソノロジーベースのプロンプトチューニング、トランスフォーマーを含む統合ワークフローを概説する。
我々の方法論の成果は、広く採用されているオントロジー言語(OWL、RDF、SPARQLなど)の知識グラフである。
論文 参考訳(メタデータ) (2024-05-29T16:40:31Z) - A Survey of Resource-efficient LLM and Multimodal Foundation Models [22.23967603206849]
大規模言語モデル(LLM)、ビジョントランスフォーマー(ViT)、拡散、マルチモーダルモデルを含む大規模な基盤モデルは、機械学習ライフサイクル全体に革命をもたらしている。
しかしながら、これらのモデルが提供する汎用性と性能の大幅な進歩は、ハードウェアリソースの面でかなりのコストがかかる。
この調査は、アルゴリズム的側面とシステム的側面の両方を調べることで、そのような研究の重要さを掘り下げるものである。
論文 参考訳(メタデータ) (2024-01-16T03:35:26Z) - Challenges in data-based geospatial modeling for environmental research
and practice [19.316860936437823]
機械学習(ML)を用いたデータに基づく地理空間モデリングが環境研究で人気を博している。
本研究では,不均衡データ,空間自己相関,予測誤差,モデル一般化,ドメイン特異性,不確実性推定など,地理空間モデリングにおける一般的なニュアンスについて検討する。
論文 参考訳(メタデータ) (2023-11-18T12:30:49Z) - FREE: The Foundational Semantic Recognition for Modeling Environmental Ecosystems [28.166089112650926]
FREEは利用可能な環境データをテキスト空間にマッピングし、環境科学における従来の予測モデリングタスクを意味認識問題に変換する。
長期予測に使用する場合、FREEは将来予測を強化するために新たに収集した観測を組み込む柔軟性を持つ。
自由は2つの社会的に重要な現実世界の応用の文脈で評価され、デラウェア川流域の河川水温を予測し、イリノイ州とアイオワ州で毎年トウモロコシの収量を予測する。
論文 参考訳(メタデータ) (2023-11-17T00:53:09Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
持続可能な開発成果を理解するために衛星画像を用いた成長する文献を合成する。
我々は、重要な人間関係の結果と、衛星画像の量の増大と解像度について、地上データの質を定量化する。
不足およびノイズの多いトレーニングデータの観点から、モデル構築に対する最近の機械学習アプローチをレビューする。
論文 参考訳(メタデータ) (2020-09-23T05:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。