論文の概要: Jacobian-Enhanced Neural Networks
- arxiv url: http://arxiv.org/abs/2406.09132v1
- Date: Thu, 13 Jun 2024 14:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 17:44:14.878380
- Title: Jacobian-Enhanced Neural Networks
- Title(参考訳): ヤコビアン強化ニューラルネットワーク
- Authors: Steven H. Berguin,
- Abstract要約: ヤコビアン強化ニューラルネットワーク(JENN)は密結合多層パーセプトロンである。
JENNの主な利点は、標準のニューラルネットワークに比べてトレーニングポイントが少なくて精度が良いことである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jacobian-Enhanced Neural Networks (JENN) are densely connected multi-layer perceptrons, whose training process is modified to predict partial derivatives accurately. Their main benefit is better accuracy with fewer training points compared to standard neural networks. These attributes are particularly desirable in the field of computer-aided design, where there is often the need to replace computationally expensive, physics-based models with fast running approximations, known as surrogate models or meta-models. Since a surrogate emulates the original model accurately in near-real time, it yields a speed benefit that can be used to carry out orders of magnitude more function calls quickly. However, in the special case of gradient-enhanced methods, there is the additional value proposition that partial derivatives are accurate, which is a critical property for one important use-case: surrogate-based optimization. This work derives the complete theory and exemplifies its superiority over standard neural nets for surrogate-based optimization.
- Abstract(参考訳): ヤコビアン強化ニューラルネットワーク(JENN)は密結合された多層パーセプトロンであり、そのトレーニングプロセスは偏微分を正確に予測するために修正される。
その主な利点は、標準のニューラルネットワークに比べてトレーニングポイントが少なくて精度が良いことだ。
これらの特性はコンピュータ支援設計の分野において特に望ましいものであり、計算コストのかかる物理モデルにサロゲートモデルやメタモデルとして知られる高速な近似を置き換える必要性がしばしばある。
シュロゲートは元のモデルをほぼリアルタイムで正確にエミュレートするため、より高速な関数呼び出しの順序付けに使用できる速度の利点が得られる。
しかし、勾配拡大法の特殊な場合、部分微分が正確であるという付加価値命題があり、これは1つの重要なユースケースにとって重要な性質である。
この研究は完全理論を導出し、サロゲートに基づく最適化のための標準ニューラルネットよりも優位性を実証する。
関連論文リスト
- Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
RMSの暗黙的な振る舞いは、微分方程式の「中央流:」によって明示的に捉えられることを示す。
これらのフローは、汎用ニューラルネットワークの長期最適化軌道を経験的に予測できることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:13Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - Training Integer-Only Deep Recurrent Neural Networks [3.1829446824051195]
精度の高い整数専用リカレントニューラルネットワーク(iRNN)を得るための量子化学習法を提案する。
本手法は, 層正規化, 注意, アクティベーション関数の適応的片方向線形(PWL)近似をサポートする。
提案手法により,RNNベースの言語モデルでエッジデバイス上で実行可能である。
論文 参考訳(メタデータ) (2022-12-22T15:22:36Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
予測符号化ネットワークは、ベイズ統計学と神経科学の両方にルーツを持つ神経科学にインスパイアされたモデルである。
シナプス重みに対する更新規則の時間的スケジュールを変更するだけで、元の規則よりもずっと効率的で安定したアルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2022-11-16T00:11:04Z) - Precision Machine Learning [5.15188009671301]
様々な関数近似法を比較し,パラメータやデータの増加とともにスケールする方法について検討する。
ニューラルネットワークは、しばしば高次元の例において古典的近似法より優れていることが判明した。
我々は,ニューラルネットワークを極端に低損失に訓練する訓練手法を開発した。
論文 参考訳(メタデータ) (2022-10-24T17:58:30Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
形状最適化に適した不確実性に基づく新しい手法を提案する。
効果的なBOを可能にし、その結果の形状の質を最先端のアプローチを超えて向上させる。
論文 参考訳(メタデータ) (2021-09-28T11:01:42Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
随伴型最適化法は空気力学的形状設計において魅力的である。
複数の最適化問題が解決されている場合、それらは違法に高価になる可能性がある。
本稿では,高コストな随伴解法に取って代わる機械学習を実現するサロゲートベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-15T15:09:21Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を導入し,高度に正確かつハードウェアに親しみやすいものにした。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
論文 参考訳(メタデータ) (2020-01-20T16:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。