論文の概要: A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening
- arxiv url: http://arxiv.org/abs/2406.09291v2
- Date: Sun, 7 Jul 2024 09:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 01:10:12.857165
- Title: A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening
- Title(参考訳): グラフ製品とグラフ粗大化によるグラフGNNのフレキシブルで等価なフレームワーク
- Authors: Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, Haggai Maron,
- Abstract要約: グラフグラフニューラルネットワーク(サブグラフGNN)は,グラフをサブグラフの集合として表現することで,メッセージパスGNNの表現性を向上する。
以前のアプローチでは、ランダムにまたは学習可能なサンプリングによって選択されたサブグラフのサブセットのみを処理することを提案していた。
本稿では,これらの問題に対処する新しいSubgraph GNNフレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.688057947275112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subgraph Graph Neural Networks (Subgraph GNNs) enhance the expressivity of message-passing GNNs by representing graphs as sets of subgraphs. They have shown impressive performance on several tasks, but their complexity limits applications to larger graphs. Previous approaches suggested processing only subsets of subgraphs, selected either randomly or via learnable sampling. However, they make suboptimal subgraph selections or can only cope with very small subset sizes, inevitably incurring performance degradation. This paper introduces a new Subgraph GNNs framework to address these issues. We employ a graph coarsening function to cluster nodes into super-nodes with induced connectivity. The product between the coarsened and the original graph reveals an implicit structure whereby subgraphs are associated with specific sets of nodes. By running generalized message-passing on such graph product, our method effectively implements an efficient, yet powerful Subgraph GNN. Controlling the coarsening function enables meaningful selection of any number of subgraphs while, contrary to previous methods, being fully compatible with standard training techniques. Notably, we discover that the resulting node feature tensor exhibits new, unexplored permutation symmetries. We leverage this structure, characterize the associated linear equivariant layers and incorporate them into the layers of our Subgraph GNN architecture. Extensive experiments on multiple graph learning benchmarks demonstrate that our method is significantly more flexible than previous approaches, as it can seamlessly handle any number of subgraphs, while consistently outperforming baseline approaches.
- Abstract(参考訳): グラフグラフニューラルネットワーク(サブグラフGNN)は,グラフをサブグラフの集合として表現することで,メッセージパスGNNの表現性を向上する。
彼らはいくつかのタスクで素晴らしいパフォーマンスを示しているが、その複雑さはアプリケーションをより大きなグラフに制限している。
以前のアプローチでは、ランダムにまたは学習可能なサンプリングによって選択されたサブグラフのサブセットのみを処理することを提案していた。
しかし、それらは準最適部分グラフ選択を行うか、非常に小さなサブセットサイズにしか対応できず、必然的に性能劣化を引き起こす。
本稿では,これらの問題に対処する新しいSubgraph GNNフレームワークを提案する。
クラスタノードを誘導接続したスーパーノードにグラフ粗化関数を適用する。
粗いグラフと元のグラフの間の積は暗黙の構造を示し、それによってグラフは特定のノードの集合に関連付けられる。
このようなグラフ製品上で一般化されたメッセージパッシングを実行することで,効率的かつ強力なサブグラフGNNを効果的に実装する。
粗い関数を制御することで、任意の数のサブグラフを有意義に選択できるが、従来の手法とは対照的に、標準的な訓練手法と完全に互換性がある。
特に、結果のノード特徴テンソルが新しい、未探索な置換対称性を示すことが分かる。
我々は、この構造を活用し、関連する線形同変層を特徴付け、それらをサブグラフGNNアーキテクチャの層に組み込む。
複数のグラフ学習ベンチマークの大規模な実験により,提案手法は従来手法よりもはるかに柔軟であり,任意のサブグラフをシームレスに扱える一方で,ベースライン手法よりも一貫して優れていることが示された。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
特定の研究の行は、GNNの表現性を向上させるためにサブグラフ情報を使用するサブグラフGNNを提案し、大きな成功を収めた。
このような効果は、すべての可能な部分グラフを列挙することによって、GNNの効率を犠牲にする。
本稿では,強化学習(RL)により強化されたGNNである磁気グラフニューラルネットワーク(MAG-GNN)を提案する。
論文 参考訳(メタデータ) (2023-10-29T20:32:21Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Stochastic Subgraph Neighborhood Pooling for Subgraph Classification [2.1270496914042996]
Subgraph Neighborhood Pooling (SSNP) は、ラベル付けトリックのような計算コストの高い操作をすることなく、サブグラフとその周辺情報を共同で集約する。
実験により、我々のモデルは、トレーニングにおいて最大3倍高速でありながら、最先端の手法(マージンが最大2%)より優れています。
論文 参考訳(メタデータ) (2023-04-17T18:49:18Z) - Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries [33.07812045457703]
グラフGNNはグラフをサブグラフのコレクションとしてモデル化するグラフニューラルネットワーク(GNN)の最近のクラスである。
ノードベースの部分グラフ選択ポリシーを用いた,最も顕著な部分グラフ法について検討する。
本稿では,従来のノードベースサブグラフGNNを一般化したサブグラフ手法に対して,メッセージパッシングの一般的なファミリを提案する。
論文 参考訳(メタデータ) (2022-06-22T14:35:47Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Subgraph Neural Networks [14.222887950206662]
本稿では,不整合部分グラフ表現を学習するためのサブグラフニューラルネットワークSubGNNを紹介する。
SubGNNは、挑戦的なバイオメディカルデータセットで非常によく機能する。
論文 参考訳(メタデータ) (2020-06-18T13:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。