論文の概要: Parameter-Efficient Active Learning for Foundational models
- arxiv url: http://arxiv.org/abs/2406.09296v1
- Date: Thu, 13 Jun 2024 16:30:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:45:33.105336
- Title: Parameter-Efficient Active Learning for Foundational models
- Title(参考訳): 基本モデルに対するパラメータ効率の良いアクティブラーニング
- Authors: Athmanarayanan Lakshmi Narayanan, Ranganath Krishnan, Amrutha Machireddy, Mahesh Subedar,
- Abstract要約: 基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
- 参考スコア(独自算出の注目度): 7.799711162530711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundational vision transformer models have shown impressive few shot performance on many vision tasks. This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework, to advance the sampling selection process in extremely budget constrained classification tasks. The focus on image datasets, known for their out-of-distribution characteristics, adds a layer of complexity and relevance to our study. Through a detailed evaluation, we illustrate the improved AL performance on these challenging datasets, highlighting the strategic advantage of merging parameter efficient fine tuning methods with foundation models. This contributes to the broader discourse on optimizing AL strategies, presenting a promising avenue for future exploration in leveraging foundation models for efficient and effective data annotation in specialized domains.
- Abstract(参考訳): 基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,高度に予算が制約された分類タスクにおけるサンプリング選択プロセスを進めるために,アクティブラーニング(AL)フレームワークにおけるパラメータ効率のよい微調整手法の適用に関する新たな研究である。
アウト・オブ・ディストリビューション特性で知られている画像データセットに注目することは、我々の研究に複雑さと関連性をもたらす。
より詳細な評価を通じて、これらの挑戦的なデータセット上でのAL性能の改善について説明し、パラメータを効率的に微調整する手法と基礎モデルを組み合わせるという戦略上の利点を強調した。
このことは、AL戦略の最適化に関する幅広い議論に寄与し、特定のドメインにおける効率的かつ効果的なデータアノテーションに基礎モデルを活用するための将来的な道のりを示す。
関連論文リスト
- Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
既存のソリューションは、既存の画像データセット上でトレーニング済みのモデルを微調整することに集中している。
我々は、事前学習された視覚変換器(ViT)における視覚プロンプト(VPT)の学習に基づく、新しい効果的なフレームワークを提案する。
セマンティック情報を用いた新しい近似が代表的能力よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-04T04:42:05Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - MeanAP-Guided Reinforced Active Learning for Object Detection [34.19741444116433]
本稿では,オブジェクト検出のためのMeanAP誘導強化能動学習について紹介する。
LSTMアーキテクチャに基づいて構築されたエージェントは、その後のトレーニングインスタンスを効率的に探索し、選択する。
我々は、一般的なベンチマーク、PASCAL VOC、MS COCOにおけるMAGRALの有効性を評価した。
論文 参考訳(メタデータ) (2023-10-12T14:59:22Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
DROの異なる変種が、スケーラブルな方法を提供する有限サム合成最適化の単なる例であることを示す。
また、非常に大規模なデータセットからロバストなモデルを学ぶために、先行技術に関して提案アルゴリズムの有効性を示す実験結果も提供する。
論文 参考訳(メタデータ) (2022-03-17T20:47:42Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
本稿では,統合学習と呼ばれるチューニング問題の新たな定式化を提案する。
このような設定では、単一のタスクをチューニングするよりも、全体の最適化時間に関心があります。
我々は,XGBoostアルゴリズムの実証研究とMIMIC-IV医療データベースから抽出した予測タスクの収集を通じて,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-01-27T21:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。