論文の概要: Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches
- arxiv url: http://arxiv.org/abs/2411.16567v1
- Date: Mon, 25 Nov 2024 16:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:30.642081
- Title: Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches
- Title(参考訳): 統合データとGANモデルアプローチによるFew-Shot学習の強化
- Authors: Yinqiu Feng, Aoran Shen, Jiacheng Hu, Yingbin Liang, Shiru Wang, Junliang Du,
- Abstract要約: 本稿では,データ拡張とモデルファインチューニングを融合することで,少数ショット学習を向上するための革新的なアプローチを提案する。
薬物発見、ターゲット認識、悪意のあるトラフィック検出などの分野で、小さなサンプルデータによって引き起こされる課題に対処することを目的としている。
その結果,本研究で開発されたMhERGANアルゴリズムは,数発の学習に極めて有効であることが確認された。
- 参考スコア(独自算出の注目度): 35.431340001608476
- License:
- Abstract: This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
- Abstract(参考訳): 本稿では,小サンプルデータによる課題への対処を目的としたフレームワークにおいて,データ拡張とモデル微調整を統合することにより,少ショット学習を向上するための革新的なアプローチを提案する。
大規模データセットを必要とする従来の機械学習モデル(特に薬物発見、ターゲット認識、悪意のあるトラフィック検出など)の限界を認識することにより、GAN(Generative Adversarial Networks)と高度な最適化技術を活用して、限られたデータによるモデルパフォーマンスを向上させる新たな戦略を提案する。
具体的には、データ拡張手法がもたらすノイズとバイアスの問題に対処し、関連するデータセットに大きく依存するファインチューニングやメートル法学習といったモデルベースのアプローチと対比する。
GANフレームワーク内のマルコフ・チェイン・モンテカルロ(MCMC)サンプリングと識別モデルアンサンブル戦略を組み合わせることで、提案モデルは生成的および識別的分布を調整し、より広い範囲の関連するデータをシミュレートする。
さらに、MHLossと再パラメータ化されたGANアンサンブルを使用して安定性を高め、収束を加速し、最終的には小さなサンプル画像と構造化データセットの分類性能を向上させる。
その結果、本研究で開発されたMhERGANアルゴリズムは、高速なモデル適応性と一般化でデータ不足をブリッジする実用的なソリューションとして、数ショット学習に非常に有効であることが確認された。
関連論文リスト
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - A Guide for Practical Use of ADMG Causal Data Augmentation [0.0]
これらの課題に対処するためのソリューションとして、因果データ拡張戦略が指摘されている。
異なる設定を考慮したADMG因果拡大法を実験的に検討した。
論文 参考訳(メタデータ) (2023-04-03T09:31:13Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
DROの異なる変種が、スケーラブルな方法を提供する有限サム合成最適化の単なる例であることを示す。
また、非常に大規模なデータセットからロバストなモデルを学ぶために、先行技術に関して提案アルゴリズムの有効性を示す実験結果も提供する。
論文 参考訳(メタデータ) (2022-03-17T20:47:42Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。