論文の概要: Characterising Interventions in Causal Games
- arxiv url: http://arxiv.org/abs/2406.09318v1
- Date: Thu, 13 Jun 2024 16:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:35:35.086642
- Title: Characterising Interventions in Causal Games
- Title(参考訳): 因果ゲームにおけるインターベンションの特徴
- Authors: Manuj Mishra, James Fox, Michael Wooldridge,
- Abstract要約: 因果ゲームは、多エージェント設定で因果クエリを答えられる確率的グラフィカルモデルである。
我々は、因果メカニズムの設計とコミットメントを考慮し、安全なAIシステムの設計への応用を実証する。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal games are probabilistic graphical models that enable causal queries to be answered in multi-agent settings. They extend causal Bayesian networks by specifying decision and utility variables to represent the agents' degrees of freedom and objectives. In multi-agent settings, whether each agent decides on their policy before or after knowing the causal intervention is important as this affects whether they can respond to the intervention by adapting their policy. Consequently, previous work in causal games imposed chronological constraints on permissible interventions. We relax this by outlining a sound and complete set of primitive causal interventions so the effect of any arbitrarily complex interventional query can be studied in multi-agent settings. We also demonstrate applications to the design of safe AI systems by considering causal mechanism design and commitment.
- Abstract(参考訳): 因果ゲームは、多エージェント設定で因果クエリを答えられる確率的グラフィカルモデルである。
因果ベイズネットワークを拡張し、エージェントの自由度と目的度を表す決定変数とユーティリティ変数を指定する。
マルチエージェント設定では、各エージェントが因果的介入を知る前に政策を決定するか否かが重要であり、それが政策に適応することで介入に反応できるかどうかに影響を及ぼす。
その結果、因果ゲームにおける以前の研究は、許容可能な介入に時間的制約を課した。
我々は、任意の任意に複雑な介入クエリの効果をマルチエージェント設定で研究できるように、音と基本的な因果的介入の完全なセットを概説することによって、これを緩和する。
我々はまた、因果メカニズムの設計とコミットメントを考慮し、安全なAIシステムの設計への応用を実証する。
関連論文リスト
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
多くの応用において、システムのメカニズムが外部の摂動によって変更されるかは未定である。
本稿では、これらの摂動特徴を原子間干渉による分布にマッピングする方法を学習する生成的介入モデル(GIM)を提案する。
論文 参考訳(メタデータ) (2024-11-21T10:37:57Z) - Causal Influence in Federated Edge Inference [34.487472866247586]
本稿では、未ラベルのストリーミングデータを用いて、接続性のある異種エージェントが推論を行う環境について考察する。
不確実性を克服するために、エージェントは、融合センターを通じてローカルな推論を交換することで互いに協力する。
エージェントの関与パターンや核融合センターの方針を反映した様々なシナリオを考察した。
論文 参考訳(メタデータ) (2024-05-02T13:06:50Z) - Towards Probabilistic Causal Discovery, Inference & Explanations for
Autonomous Drones in Mine Surveying Tasks [5.569226615350014]
因果モデリングは、自律的なエージェントによる意思決定や結果の説明を支援することができる。
ここでは,塩鉱で稼働するドローンシステムにおける因果関係に関する課題を特定する。
本稿では、因果的インフォームドPOMDP計画、オンラインSCM適応、およびポストホックな反事実的説明からなる確率的因果関係の枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-19T15:12:55Z) - On Imperfect Recall in Multi-Agent Influence Diagrams [57.21088266396761]
マルチエージェント・インフルエンス・ダイアグラム(MAID)はベイズネットワークに基づくゲーム理論モデルとして人気がある。
混合ポリシと2種類の相関平衡を用いて, 忘れ易いエージェントと不注意なエージェントでMAIDを解く方法を示す。
また,不完全なリコールがしばしば避けられないマルコフゲームやチーム状況へのMAIDの適用についても述べる。
論文 参考訳(メタデータ) (2023-07-11T07:08:34Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Reasoning about Causality in Games [63.930126666879396]
因果推論とゲーム理論推論は人工知能の基本的なトピックである。
本稿では,エージェントの意思決定ルールとゲームを管理する分布の依存関係をエンコードするメカニケードゲームを紹介する。
因果ゲームと他の形式主義の対応を記述し、他の因果ゲームやゲーム理論モデルがサポートしていない問合せにどのように因果ゲームが使えるかを説明する。
論文 参考訳(メタデータ) (2023-01-05T22:47:28Z) - Decision-Making Among Bounded Rational Agents [5.24482648010213]
本稿では,情報理論の観点からの有界合理性の概念をゲーム理論の枠組みに導入する。
これにより、ロボットは他のエージェントの準最適動作を推論し、計算上の制約の下で行動することができる。
その結果,ロボットが他のエージェントの理性行動の異なるレベルを推論し,その計算制約の下で合理的な戦略を計算できることが実証された。
論文 参考訳(メタデータ) (2022-10-17T00:29:24Z) - Application of Causal Inference to Analytical Customer Relationship
Management in Banking and Insurance [6.228766191647919]
統計学において、因果関係は長年研究され、応用されてきたが、人工知能(AI)についてはあまり詳細には研究されていない。
本研究では、分析的顧客関係管理問題を解決するための説明可能性を提供するために、因果推論の原則を適用した。
ローンのデフォルト、保険詐欺検出、クレジットカード詐欺検出データセットの良質な対策が作成された。
論文 参考訳(メタデータ) (2022-08-19T05:57:58Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
ゲームにおける学習と介入のための統一的なフレームワークを提供する。
明示的および暗黙的な区別に基づく2つのアプローチを提案する。
分析結果は、実世界のいくつかの問題を用いて検証される。
論文 参考訳(メタデータ) (2020-10-26T18:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。