論文の概要: Memory-Efficient Sparse Pyramid Attention Networks for Whole Slide Image Analysis
- arxiv url: http://arxiv.org/abs/2406.09333v1
- Date: Thu, 13 Jun 2024 17:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:35:35.059247
- Title: Memory-Efficient Sparse Pyramid Attention Networks for Whole Slide Image Analysis
- Title(参考訳): 全スライド画像解析のためのメモリ効率の良いスパースピラミッド注意ネットワーク
- Authors: Weiyi Wu, Chongyang Gao, Xinwen Xu, Siting Li, Jiang Gui,
- Abstract要約: ホイルスライド画像 (WSI) は現代の病理診断において重要であるが, ギガピクセルスケールの解像度と疎い情報領域は, 計算上の課題を生じさせる。
これらの課題に対処するために、シフトWindows(SPAN)を用いたメモリ効率の良いスパースピラミッドアテンションネットワークを提案する。
SPANはスパースピラミッドアテンションアーキテクチャを導入し、重要な機能を保持しながらメモリオーバーヘッドを減らすことを目的として、WSI内の情報領域に階層的にフォーカスする。
- 参考スコア(独自算出の注目度): 8.155575318208632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole Slide Images (WSIs) are crucial for modern pathological diagnosis, yet their gigapixel-scale resolutions and sparse informative regions pose significant computational challenges. Traditional dense attention mechanisms, widely used in computer vision and natural language processing, are impractical for WSI analysis due to the substantial data scale and the redundant processing of uninformative areas. To address these challenges, we propose Memory-Efficient Sparse Pyramid Attention Networks with Shifted Windows (SPAN), drawing inspiration from state-of-the-art sparse attention techniques in other domains. SPAN introduces a sparse pyramid attention architecture that hierarchically focuses on informative regions within the WSI, aiming to reduce memory overhead while preserving critical features. Additionally, the incorporation of shifted windows enables the model to capture long-range contextual dependencies essential for accurate classification. We evaluated SPAN on multiple public WSI datasets, observing its competitive performance. Unlike existing methods that often struggle to model spatial and contextual information due to memory constraints, our approach enables the accurate modeling of these crucial features. Our study also highlights the importance of key design elements in attention mechanisms, such as the shifted-window scheme and the hierarchical structure, which contribute substantially to the effectiveness of SPAN in WSI analysis. The potential of SPAN for memory-efficient and effective analysis of WSI data is thus demonstrated, and the code will be made publicly available following the publication of this work.
- Abstract(参考訳): ホイルスライド画像 (WSI) は現代の病理診断において重要であるが, ギガピクセルスケールの解像度と疎い情報領域は, 計算上の課題を生じさせる。
コンピュータビジョンや自然言語処理で広く使われている従来の高密度アテンション機構は、実質的なデータスケールと非形式領域の冗長な処理のため、WSI分析には実用的ではない。
これらの課題に対処するため、我々は、SPAN(Shifted Windows)を用いたメモリ効率の良いスパースピラミッドアテンションネットワークを提案し、他のドメインにおける最先端のスパースアテンション技術からインスピレーションを得た。
SPANはスパースピラミッドアテンションアーキテクチャを導入し、重要な機能を保持しながらメモリオーバーヘッドを減らすことを目的として、WSI内の情報領域に階層的にフォーカスする。
さらに、シフトウィンドウを組み込むことで、モデルが正確な分類に不可欠な長距離コンテキスト依存をキャプチャできる。
我々は、SPANを複数の公開WSIデータセット上で評価し、その競合性能を観察した。
メモリ制約による空間情報や文脈情報のモデル化に苦慮する既存手法とは異なり,本手法はこれらの重要な特徴の正確なモデリングを可能にする。
本研究は,WSI解析におけるSPANの有効性に大きく寄与する,シフトウインドウスキームや階層構造などの注意機構における重要な設計要素の重要性を強調した。
したがって、WSIデータのメモリ効率と効率的な分析のためのSPANの可能性を実証し、この研究の公開後、コードを公開する。
関連論文リスト
- TopoFR: A Closer Look at Topology Alignment on Face Recognition [42.936929062768826]
PTSAと呼ばれるトポロジカル構造アライメント戦略とSDEという硬質試料マイニング戦略を利用する新しいFRモデルであるTopoFRを提案する。
PTSAは永続ホモロジーを用いて入力空間と潜在空間の位相構造を整列し、構造情報を効果的に保存し、FRモデルの一般化性能を向上させる。
一般的な顔のベンチマーク実験の結果は、最先端の手法よりもTopoFRの方が優れていることを示している。
論文 参考訳(メタデータ) (2024-10-14T14:58:30Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
本稿では、簡単な構造で大幅な性能向上を実現するための効率的な局所注意法(ELA)を提案する。
これらの課題を克服するため、我々は1次元畳み込みとグループ正規化機能強化技術の導入を提案する。
ELAはResNet、MobileNet、DeepLabといったディープCNNネットワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-02T08:06:18Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
本稿では,メモリリプレイ技術を用いて,メモリ爆発問題に対処する枠組みを提案する。
Topology-aware Embedding Memory (TEM) を用いたPDGNNは最先端技術よりも優れている。
論文 参考訳(メタデータ) (2024-01-24T03:03:17Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
シングルイメージ超解像(SISR)は、ディープラーニングの統合によって大幅に進歩した。
本稿では,エッジ分割ピラミッドモジュール (ESPM) とパノラマ特徴抽出モジュール (PFEM) を調和して結合し,既存の手法の限界を克服する,EPNet (Efficient Pyramid Network) を提案する。
論文 参考訳(メタデータ) (2023-12-20T19:56:53Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Spatial Attention-based Distribution Integration Network for Human Pose
Estimation [0.8052382324386398]
本研究では,空間アテンションに基づく分布統合ネットワーク(SADI-NET)を提案する。
我々のネットワークは、受容強化モジュール(RFM)、空間融合モジュール(SFM)、分散学習モジュール(DLM)の3つの効率的なモデルで構成されている。
我々のモデルは、MPIIテストデータセットで920.10%の精度を得、既存のモデルよりも大幅に改善され、最先端のパフォーマンスが確立された。
論文 参考訳(メタデータ) (2023-11-09T12:43:01Z) - Task-specific Fine-tuning via Variational Information Bottleneck for
Weakly-supervised Pathology Whole Slide Image Classification [10.243293283318415]
MIL(Multiple Instance Learning)は、デジタル・パスロジー・ホール・スライド・イメージ(WSI)分類において有望な結果を示している。
本稿では,Information Bottleneck 理論を動機とした効率的な WSI 微調整フレームワークを提案する。
我々のフレームワークは、様々なWSIヘッド上の5つの病理WSIデータセットで評価される。
論文 参考訳(メタデータ) (2023-03-15T08:41:57Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。