論文の概要: ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- arxiv url: http://arxiv.org/abs/2406.09334v3
- Date: Mon, 16 Dec 2024 05:06:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:51:24.788236
- Title: ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- Title(参考訳): ProxyLM:プロキシモデルによる多言語タスクにおける言語モデルのパフォーマンス予測
- Authors: David Anugraha, Genta Indra Winata, Chenyue Li, Patrick Amadeus Irawan, En-Shiun Annie Lee,
- Abstract要約: ProxyLMは、プロキシモデルを用いてLMのパフォーマンスを予測するために設計されたタスクおよび言語に依存しないフレームワークである。
ProxyLMはタスク評価の計算オーバーヘッドを大幅に減らし、従来の手法よりも37.08倍の高速化を実現した。
この結果から, ProxyLM は事前学習した LM の未確認言語に適応するだけでなく,異なるデータセットに対して効果的に一般化できることが示された。
- 参考スコア(独自算出の注目度): 9.710960283117771
- License:
- Abstract: Performance prediction is a method to estimate the performance of Language Models (LMs) on various Natural Language Processing (NLP) tasks, mitigating computational costs associated with model capacity and data for fine-tuning. Our paper presents ProxyLM, a scalable task- and language-agnostic framework designed to predict the performance of LMs using proxy models. These proxy models act as surrogates, approximating the performance of the LM of interest. By leveraging these proxy models, ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods, even with our smallest proxy models. Our results across multiple multilingual NLP tasks and various robustness tests demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets, outperforming the state-of-the-art by at least 1.78x in terms of root-mean-square error (RMSE).
- Abstract(参考訳): 性能予測は、様々な自然言語処理(NLP)タスクにおける言語モデル(LM)の性能を推定し、モデルキャパシティと微調整のためのデータに関連する計算コストを軽減する手法である。
本稿では,プロキシモデルによるLMの性能予測を目的とした,スケーラブルなタスク・言語に依存しないフレームワークであるProxyLMを提案する。
これらのプロキシモデルは、関心のあるLMのパフォーマンスを近似する代理として機能する。
これらのプロキシモデルを活用することで、ProxyLMはタスク評価の計算オーバーヘッドを大幅に削減し、最小のプロキシモデルであっても従来の手法よりも37.08倍の高速化を実現します。
複数の多言語NLPタスクと各種ロバストネステストによる結果から, ProxyLMは予め訓練されたLMで未確認言語に適応するだけでなく,異なるデータセットに対して効果的に一般化し,ルート平均二乗誤差(RMSE)の少なくとも1.78倍の精度で最先端を達成していることがわかった。
関連論文リスト
- PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection [28.442470930703337]
PRISMは、効率的なマルチモーダルデータ選択のためのトレーニング不要のアプローチである。
Pearson相関解析を用いて、MLLMの固有視覚符号化特性の定量化を行う。
ビジュアルインストラクションのチューニングとデータ選択に要する時間を従来の手法の30%に短縮する。
論文 参考訳(メタデータ) (2025-02-17T18:43:41Z) - Predictable Emergent Abilities of LLMs: Proxy Tasks Are All You Need [9.660067334665792]
本稿では,プロキシタスクを活用して創発的能力を予測する手法を提案する。
ツール利用能力に関するケーススタディでは,予測性能と実性能との間に強い相関関係が認められた。
論文 参考訳(メタデータ) (2024-12-10T01:56:30Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
本稿では,対象言語に1つの例があるICLを用いて生成されたデータセットに対して,半教師付き学習手法であるGeMQuADを提案する。
我々は、特に低リソースの多言語設定において、モデル性能を向上させるために、高品質なデータを反復的に識別する。
我々のフレームワークは、ヒンディー語で0.22/1.68 F1/EMポイント、MLQAデータセットでスペイン語で0.82/1.37 F1/EMポイントで機械翻訳拡張モデルより優れています。
論文 参考訳(メタデータ) (2024-04-14T06:55:42Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。