ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- URL: http://arxiv.org/abs/2406.09334v3
- Date: Mon, 16 Dec 2024 05:06:46 GMT
- Title: ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- Authors: David Anugraha, Genta Indra Winata, Chenyue Li, Patrick Amadeus Irawan, En-Shiun Annie Lee,
- Abstract summary: ProxyLM is a task- and language-agnostic framework designed to predict the performance of LMs using proxy models.
ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods.
Our results demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets.
- Score: 9.710960283117771
- License:
- Abstract: Performance prediction is a method to estimate the performance of Language Models (LMs) on various Natural Language Processing (NLP) tasks, mitigating computational costs associated with model capacity and data for fine-tuning. Our paper presents ProxyLM, a scalable task- and language-agnostic framework designed to predict the performance of LMs using proxy models. These proxy models act as surrogates, approximating the performance of the LM of interest. By leveraging these proxy models, ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods, even with our smallest proxy models. Our results across multiple multilingual NLP tasks and various robustness tests demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets, outperforming the state-of-the-art by at least 1.78x in terms of root-mean-square error (RMSE).
Related papers
- PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection [28.442470930703337]
PRISM is a training-free approach for efficient multimodal data selection.
It uses Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs.
It reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods.
arXiv Detail & Related papers (2025-02-17T18:43:41Z) - Predictable Emergent Abilities of LLMs: Proxy Tasks Are All You Need [9.660067334665792]
We propose a method that predicts emergent abilities by leveraging proxy tasks.
In a case study on tool utilization capabilities, our method demonstrated a strong correlation between predicted and actual performance.
arXiv Detail & Related papers (2024-12-10T01:56:30Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
In this paper, we propose GeMQuAD - a semi-supervised learning approach, applied to a dataset generated through ICL with just one example in the target language.
We iteratively identify high-quality data to enhance model performance, especially for low-resource multilingual setting.
Our framework outperforms the machine translation-augmented model by 0.22/1.68 F1/EM points for Hindi and 0.82/1.37 F1/EM points for Spanish on the MLQA dataset.
arXiv Detail & Related papers (2024-04-14T06:55:42Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTL is a novel post-processing framework that operates agnostically across tasks and models.
It identifies biases, proposes resolutions, and guides the model to self-debias its outputs.
This approach minimizes computational costs and preserves model performance.
arXiv Detail & Related papers (2024-03-01T00:02:37Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.