論文の概要: Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores
- arxiv url: http://arxiv.org/abs/2406.09346v1
- Date: Thu, 13 Jun 2024 17:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:25:49.647223
- Title: Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores
- Title(参考訳): Scoreformer: 大規模ドッキングスコア予測のためのサロゲートモデル
- Authors: Álvaro Ciudad, Adrián Morales-Pastor, Laura Malo, Isaac Filella-Mercè, Victor Guallar, Alexis Molina,
- Abstract要約: 分子ドッキングスコアを正確に予測するために設計された新しいグラフトランスフォーマモデルであるScoreFormerを提案する。
ScoreFormerはドッキングスコア予測の競争性能を達成し、既存のモデルに比べて1.65倍の推論時間削減を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we present ScoreFormer, a novel graph transformer model designed to accurately predict molecular docking scores, thereby optimizing high-throughput virtual screening (HTVS) in drug discovery. The architecture integrates Principal Neighborhood Aggregation (PNA) and Learnable Random Walk Positional Encodings (LRWPE), enhancing the model's ability to understand complex molecular structures and their relationship with their respective docking scores. This approach significantly surpasses traditional HTVS methods and recent Graph Neural Network (GNN) models in both recovery and efficiency due to a wider coverage of the chemical space and enhanced performance. Our results demonstrate that ScoreFormer achieves competitive performance in docking score prediction and offers a substantial 1.65-fold reduction in inference time compared to existing models. We evaluated ScoreFormer across multiple datasets under various conditions, confirming its robustness and reliability in identifying potential drug candidates rapidly.
- Abstract(参考訳): 本研究では,分子ドッキングスコアを正確に予測し,薬物発見における高スループット仮想スクリーニング(HTVS)を最適化する新しいグラフトランスフォーマーモデルであるScoreFormerを提案する。
このアーキテクチャは、Principal Neborhood Aggregation (PNA)とLearningable Random Walk Positional Encodings (LRWPE)を統合し、複雑な分子構造とそれらのドッキングスコアとの関係を理解する能力を高める。
従来のHTVS手法や最近のグラフニューラルネットワーク(GNN)モデルを大きく上回る手法である。
この結果から,ScoreFormerはドッキングスコア予測の競争性能を向上し,既存のモデルに比べて1.65倍の推論時間を短縮できることがわかった。
種々の条件下でScoreFormerを複数のデータセットで評価し,薬剤候補の迅速同定における堅牢性と信頼性を確認した。
関連論文リスト
- Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるRussetポテトクローンの適合性を予測するため, 機械学習アルゴリズムの適用について検討する。
我々はオレゴン州で手作業で収集した試験のデータを活用している。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
論文 参考訳(メタデータ) (2023-07-03T14:46:49Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation
using Generative Models [74.43215520371506]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Collaborative Uncertainty in Multi-Agent Trajectory Forecasting [35.013892666040846]
本稿では,対話モジュールから生じる不確実性をモデル化する新しい概念であるコラボレーティブ不確実性(CU)を提案する。
我々は、将来の軌跡とそれに対応する不確実性を学ぶための予測モデルを構築するための一般的なCUベースのフレームワークを構築した。
いずれの場合も、2つの合成データセットと2つの大規模軌跡予測ベンチマークについて広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-26T18:27:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
我々は超複雑特徴変換の特性を利用するグラフニューラルネットワークを開発した。
特に、提案したモデルのクラスでは、代数自身を特定する乗法則は、トレーニング中にデータから推測される。
提案するハイパーコンプレックスgnnをいくつかのオープングラフベンチマークデータセット上でテストし,そのモデルが最先端の性能に達することを示す。
論文 参考訳(メタデータ) (2021-03-30T18:01:06Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Concept-based model explanations for Electronic Health Records [1.6837409766909865]
概念活性化ベクトル(TCAV)を用いたテストは、人間に理解可能な説明を提供する手段として最近導入された。
本手法を時系列データに拡張し,TCAVの適用をEHRの逐次予測に適用する。
論文 参考訳(メタデータ) (2020-12-03T22:18:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。