Data Attribution for Text-to-Image Models by Unlearning Synthesized Images
- URL: http://arxiv.org/abs/2406.09408v1
- Date: Thu, 13 Jun 2024 17:59:44 GMT
- Title: Data Attribution for Text-to-Image Models by Unlearning Synthesized Images
- Authors: Sheng-Yu Wang, Aaron Hertzmann, Alexei A. Efros, Jun-Yan Zhu, Richard Zhang,
- Abstract summary: The goal of data attribution for text-to-image models is to identify the training images that most influence the generation of a new image.
We propose a new approach that efficiently identifies highly-influential images.
- Score: 71.23012718682634
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of data attribution for text-to-image models is to identify the training images that most influence the generation of a new image. We can define "influence" by saying that, for a given output, if a model is retrained from scratch without that output's most influential images, the model should then fail to generate that output image. Unfortunately, directly searching for these influential images is computationally infeasible, since it would require repeatedly retraining from scratch. We propose a new approach that efficiently identifies highly-influential images. Specifically, we simulate unlearning the synthesized image, proposing a method to increase the training loss on the output image, without catastrophic forgetting of other, unrelated concepts. Then, we find training images that are forgotten by proxy, identifying ones with significant loss deviations after the unlearning process, and label these as influential. We evaluate our method with a computationally intensive but "gold-standard" retraining from scratch and demonstrate our method's advantages over previous methods.
Related papers
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-06T20:38:14Z) - One-Shot Image Restoration [0.0]
Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution.
Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity.
arXiv Detail & Related papers (2024-04-26T14:03:23Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
We present a training-free method to attribute fake images generated by text-to-image models to their source models.
By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image.
arXiv Detail & Related papers (2024-03-03T11:55:49Z) - Aligning Text-to-Image Diffusion Models with Reward Backpropagation [62.45086888512723]
We propose AlignProp, a method that aligns diffusion models to downstream reward functions using end-to-end backpropagation of the reward gradient.
We show AlignProp achieves higher rewards in fewer training steps than alternatives, while being conceptually simpler.
arXiv Detail & Related papers (2023-10-05T17:59:18Z) - Evaluating Data Attribution for Text-to-Image Models [62.844382063780365]
We evaluate attribution through "customization" methods, which tune an existing large-scale model toward a given exemplar object or style.
Our key insight is that this allows us to efficiently create synthetic images that are computationally influenced by the exemplar by construction.
By taking into account the inherent uncertainty of the problem, we can assign soft attribution scores over a set of training images.
arXiv Detail & Related papers (2023-06-15T17:59:51Z) - Supervised Deep Learning for Content-Aware Image Retargeting with
Fourier Convolutions [11.031841470875571]
Image aims to alter the size of the image with attention to the contents.
Labeled datasets are unavailable for training deep learning models in the image tasks.
Regular convolutional neural networks cannot generate images of different sizes in inference time.
arXiv Detail & Related papers (2023-06-12T19:17:44Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - Understanding invariance via feedforward inversion of discriminatively
trained classifiers [30.23199531528357]
Past research has discovered that some extraneous visual detail remains in the output logits.
We develop a feedforward inversion model that produces remarkably high fidelity reconstructions.
Our approach is based on BigGAN, with conditioning on logits instead of one-hot class labels.
arXiv Detail & Related papers (2021-03-15T17:56:06Z) - DeFlow: Learning Complex Image Degradations from Unpaired Data with
Conditional Flows [145.83812019515818]
We propose DeFlow, a method for learning image degradations from unpaired data.
We model the degradation process in the latent space of a shared flow-decoder network.
We validate our DeFlow formulation on the task of joint image restoration and super-resolution.
arXiv Detail & Related papers (2021-01-14T18:58:01Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.