論文の概要: The World Wide Recipe: A community-centred framework for fine-grained data collection and regional bias operationalisation
- arxiv url: http://arxiv.org/abs/2406.09496v3
- Date: Sun, 09 Feb 2025 17:13:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 18:57:48.634118
- Title: The World Wide Recipe: A community-centred framework for fine-grained data collection and regional bias operationalisation
- Title(参考訳): World Wide Recipe: きめ細かいデータ収集と地域バイアス管理のためのコミュニティ中心のフレームワーク
- Authors: Jabez Magomere, Shu Ishida, Tejumade Afonja, Aya Salama, Daniel Kochin, Foutse Yuehgoh, Imane Hamzaoui, Raesetje Sefala, Aisha Alaagib, Samantha Dalal, Beatrice Marchegiani, Elizaveta Semenova, Lauren Crais, Siobhan Mackenzie Hall,
- Abstract要約: 本稿では,文化に配慮した参加型データ収集のためのフレームワークであるWorld Wideのレシピを紹介する。
バイアス運用を分析して、現在のシステムがいくつかの次元でどのようにパフォーマンスが低下しているかを強調します。
これらのT2Iモデルは、一般的に、各地域固有の料理の品質のアウトプットを生成しない。
- 参考スコア(独自算出の注目度): 3.505416621482746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the World Wide recipe, which sets forth a framework for culturally aware and participatory data collection, and the resultant regionally diverse World Wide Dishes evaluation dataset. We also analyse bias operationalisation to highlight how current systems underperform across several dimensions: (in-)accuracy, (mis-)representation, and cultural (in-)sensitivity, with evidence from qualitative community-based observations and quantitative automated tools. We find that these T2I models generally do not produce quality outputs of dishes specific to various regions. This is true even for the US, which is typically considered more well-resourced in training data -- although the generation of US dishes does outperform that of the investigated African countries. The models demonstrate the propensity to produce inaccurate and culturally misrepresentative, flattening, and insensitive outputs. These representational biases have the potential to further reinforce stereotypes and disproportionately contribute to erasure based on region. The dataset and code are available at https://github.com/oxai/world-wide-dishes.
- Abstract(参考訳): 本稿では、文化的に認識され、参加的なデータ収集のためのフレームワークであるWorld Wide recipeを紹介し、その結果、地域的に多様なWorld Wide Dishes評価データセットについて紹介する。
また、偏りの運用も分析して、現状のシステムは、(-)正確性、(mis-)表現、文化的(in-)感受性など、いくつかの側面において、質的なコミュニティベースの観察と定量的自動化ツールによる証拠によって、どのようにパフォーマンスが低下しているかを強調します。
これらのT2Iモデルは、一般的に、各地域固有の料理の品質のアウトプットを生成しない。
米国の食器生産は調査対象のアフリカ諸国よりも上回っているが、訓練データでは通常より十分な資源が供給されていると見なされる米国にとっても、これは事実だ。
これらのモデルは、不正確で文化的に誤った表現、平らな出力、そして不感な出力を生み出すことの正当性を示す。
これらの表現バイアスは、ステレオタイプをさらに強化し、領域に基づく消去に不均等に寄与する可能性がある。
データセットとコードはhttps://github.com/oxai/world-wide-dishesで公開されている。
関連論文リスト
- Food Delivery Time Prediction in Indian Cities Using Machine Learning Models [0.4893345190925178]
本研究では,実時間文脈変数を予測モデルに組み込むことでギャップを解消する。
我々は,線形回帰,決定木,バグング,ランダムフォレスト,XGBoost,LightGBMなどの機械学習アルゴリズムを体系的に比較した。
実験の結果、LightGBMモデルの方が予測精度が良く、R2スコアは0.76、Mean Squared Error(MSE)は20.59で、従来のベースラインモデルよりも優れていた。
論文 参考訳(メタデータ) (2025-03-19T13:02:23Z) - Towards Understanding Text Hallucination of Diffusion Models via Local Generation Bias [76.85949078144098]
本稿では,拡散モデルが個々のシンボルを正しく生成するが,それらを意味のない方法で組み立てるテキスト幻覚に焦点を当てる。
このような現象は,ネットワークの局所的生成バイアスに起因すると考えられる。
また、ハイパーキューブ上の2層学習パリティポイントを含む特定のケースのトレーニングダイナミクスを理論的に解析する。
論文 参考訳(メタデータ) (2025-03-05T15:28:50Z) - Biased Heritage: How Datasets Shape Models in Facial Expression Recognition [13.77824359359967]
画像に基づく表情認識システムにおいて,データセットから訓練されたモデルへのバイアス伝搬について検討する。
本稿では,複数の階層群を有する複数クラス問題に特化して設計された新しいバイアス指標を提案する。
その結果,FERデータセットの一般的な人口収支よりも,感情特異的な人口動態パターンの防止が優先されるべきであることが示唆された。
論文 参考訳(メタデータ) (2025-03-05T12:25:22Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Multilingual Diversity Improves Vision-Language Representations [66.41030381363244]
このデータセットの事前トレーニングは、ImageNet上で英語のみまたは英語が支配するデータセットを使用してパフォーマンスが向上する。
GeoDEのような地理的に多様なタスクでは、アフリカから得られる最大の利益とともに、すべての地域における改善も観察します。
論文 参考訳(メタデータ) (2024-05-27T08:08:51Z) - Rethinking Debiasing: Real-World Bias Analysis and Mitigation [17.080528126651977]
既存のベンチマークと実世界のデータセットのバイアス分布を再検討する。
既存のベンチマークで表現されていない実世界のバイアスの重要な特徴を実証的および理論的に同定する。
Debias in Destruction (DiD) という,既存のデバイアス法に容易に適用可能な,シンプルかつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-24T06:06:41Z) - Diverse Perspectives, Divergent Models: Cross-Cultural Evaluation of Depression Detection on Twitter [4.462334751640166]
我々は、異文化のTwitterデータに基づくAIモデルを構築するためのベンチマークデータセットの一般化を評価する。
以上の結果から,抑うつ検出モデルが世界規模で一般化しないことが示唆された。
事前訓練された言語モデルは、ロジスティック回帰と比較して最高の一般化を達成するが、落ち込んだユーザーと非西洋人ユーザーには依然として大きな差がある。
論文 参考訳(メタデータ) (2024-04-01T03:59:12Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - FoodFusion: A Latent Diffusion Model for Realistic Food Image Generation [69.91401809979709]
後期拡散モデル(LDMs)のような最先端画像生成モデルでは、視覚的に印象的な食品関連画像を生成する能力が実証されている。
本稿では,テキスト記述からリアルな食品画像の忠実な合成を目的とした,潜伏拡散モデルであるFoodFusionを紹介する。
FoodFusionモデルの開発には、大規模なオープンソースフードデータセットを活用することが含まれており、30万以上のキュレーションされたイメージキャプチャペアが生成される。
論文 参考訳(メタデータ) (2023-12-06T15:07:12Z) - Leveraging Diffusion Perturbations for Measuring Fairness in Computer
Vision [25.414154497482162]
拡散モデルを利用してそのようなデータセットを作成できることを実証する。
マルチクラスの職業分類タスクにおいて,複数の視覚言語モデルをベンチマークする。
非コーカサスラベルで生成された画像は、コーカサスラベルで生成された画像よりも、職業的誤分類率が高いことが判明した。
論文 参考訳(メタデータ) (2023-11-25T19:40:13Z) - All Should Be Equal in the Eyes of Language Models: Counterfactually
Aware Fair Text Generation [16.016546693767403]
本研究では,多様な階層のモデル理解を動的に比較し,より公平な文を生成する枠組みを提案する。
CAFIEはより公平なテキストを生成し、公平性と言語モデリング能力の最良のバランスを打ちます。
論文 参考訳(メタデータ) (2023-11-09T15:39:40Z) - Computer Vision Datasets and Models Exhibit Cultural and Linguistic
Diversity in Perception [28.716435050743957]
異なる文化的背景を持つ人々が、同じ視覚刺激を視る場合でも、いかに異なる概念を観察するかを考察する。
同じ画像に対して7つの言語で生成されたテキスト記述を比較することで,意味内容と言語表現に有意な差が認められた。
私たちの研究は、コンピュータビジョンコミュニティにおける人間の知覚の多様性を考慮し、受け入れる必要性に注目しています。
論文 参考訳(メタデータ) (2023-10-22T16:51:42Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
本稿では,人的専門家と生成言語モデルによって共同で構築された100万以上の質問からなる中国語バイアスベンチマークデータセットを提案する。
データセットのテストインスタンスは、手作業による厳格な品質管理を備えた3K以上の高品質テンプレートから自動的に抽出される。
大規模な実験により、データセットがモデルバイアスを検出することの有効性が実証された。
論文 参考訳(メタデータ) (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
この研究は、言語モデルにおけるバイアスの欠陥を使用して、6つの異なるオンラインコミュニティのバイアスを調査します。
得られたモデルのバイアスは、異なる人口層を持つモデルに促し、これらの世代における感情と毒性の値を比較することで評価される。
この作業は、トレーニングデータからバイアスがどの程度容易に吸収されるかを確認するだけでなく、さまざまなデータセットやコミュニティのバイアスを特定し比較するためのスケーラブルな方法も提示する。
論文 参考訳(メタデータ) (2023-06-04T08:09:26Z) - Inspecting the Geographical Representativeness of Images from
Text-to-Image Models [52.80961012689933]
本研究では,27カ国540人の参加者からなるクラウドソーシング調査を用いて,生成された画像の地理的代表性を測定した。
国名のない故意に特定されていない入力に対して、生成された画像は、主にアメリカの周囲を反映しており、その後インドが続く。
多くの国でのスコアは依然として低いままで、将来のモデルがより地理的に包括的である必要性を強調している。
論文 参考訳(メタデータ) (2023-05-18T16:08:11Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-10T18:22:31Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - DALL-Eval: Probing the Reasoning Skills and Social Biases of
Text-to-Image Generation Models [73.12069620086311]
テキスト・ツー・イメージ・モデルの視覚的推論能力と社会的バイアスについて検討する。
まず,物体認識,物体カウント,空間的関係理解という3つの視覚的推論スキルを計測する。
第2に、生成した画像の性別/肌の色調分布を測定することにより、性別と肌のトーンバイアスを評価する。
論文 参考訳(メタデータ) (2022-02-08T18:36:52Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
我々はデータセットを特徴付け、診断するモデルベースのツールであるData Mapsを紹介した。
私たちは、トレーニング中の個々のインスタンス上でのモデルの振る舞いという、ほとんど無視された情報のソースを活用しています。
以上の結果から,データ量から品質へのフォーカスの変化は,ロバストなモデルとアウト・オブ・ディストリビューションの一般化に繋がる可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-22T20:19:41Z) - REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets [64.76453161039973]
REVISE(Revealing VIsual biaSEs)は、視覚的データセットの調査を支援するツールである。
1)オブジェクトベース,(2)個人ベース,(3)地理ベースという3つの次元に沿った潜在的なバイアスを呈示する。
論文 参考訳(メタデータ) (2020-04-16T23:54:37Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。