Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
- URL: http://arxiv.org/abs/2406.09561v1
- Date: Thu, 13 Jun 2024 20:00:06 GMT
- Title: Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
- Authors: Nathan Stromberg, Rohan Ayyagari, Sanmi Koyejo, Richard Nock, Lalitha Sankar,
- Abstract summary: We propose a drop-in correction for label noise in last-layer retraining.
Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead.
- Score: 28.69917037694153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Last-layer retraining methods have emerged as an efficient framework for correcting existing base models. Within this framework, several methods have been proposed to deal with correcting models for subgroup fairness with and without group membership information. Importantly, prior work has demonstrated that many methods are susceptible to noisy labels. To this end, we propose a drop-in correction for label noise in last-layer retraining, and demonstrate that it achieves state-of-the-art worst-group accuracy for a broad range of symmetric label noise and across a wide variety of datasets exhibiting spurious correlations. Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead compared to existing methods.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
Noisy multi-label learning has garnered increasing attention due to the challenges posed by collecting large-scale accurate labels.
The introduction of transition matrices can help model multi-label noise and enable the development of statistically consistent algorithms.
We propose a novel estimator that leverages label correlations without the need for anchor points or precise fitting of noisy class posteriors.
arXiv Detail & Related papers (2023-09-22T08:35:38Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - Ensemble Learning with Manifold-Based Data Splitting for Noisy Label
Correction [20.401661156102897]
noisy labels in training data can significantly degrade a model's generalization performance.
We propose an ensemble learning method to correct noisy labels by exploiting the local structures of feature manifold.
Our experiments on real-world noisy label datasets demonstrate the superiority of the proposed method over existing state-of-the-arts.
arXiv Detail & Related papers (2021-03-13T07:24:58Z) - Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels [86.5943044285146]
The label noise transition matrix $T$ reflects the probabilities that true labels flip into noisy ones.
In this paper, we focus on learning under the mixed closed-set and open-set label noise.
Our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.
arXiv Detail & Related papers (2020-12-02T02:42:45Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.