Temporal Planning via Interval Logic Satisfiability for Autonomous Systems
- URL: http://arxiv.org/abs/2406.09661v1
- Date: Fri, 14 Jun 2024 02:21:53 GMT
- Title: Temporal Planning via Interval Logic Satisfiability for Autonomous Systems
- Authors: Miquel Ramirez, Anubhav Singh, Peter Stuckey, Chris Manzie,
- Abstract summary: We consider formulations of temporal planning where intervals are associated with both action and fluent atoms and relations between these are given as sentences in Allen's Interval Logic.
We propose a notion of planning graphs that can account for complex relations between actions and fluents as a Constraint Programming (CP) model.
We demonstrate our algorithm outperforms existing PDDL 2.1 planners in the case studies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many automated planning methods and formulations rely on suitably designed abstractions or simplifications of the constrained dynamics associated with agents to attain computational scalability. We consider formulations of temporal planning where intervals are associated with both action and fluent atoms, and relations between these are given as sentences in Allen's Interval Logic. We propose a notion of planning graphs that can account for complex concurrency relations between actions and fluents as a Constraint Programming (CP) model. We test an implementation of our algorithm on a state-of-the-art framework for CP and compare it with PDDL 2.1 planners that capture plans requiring complex concurrent interactions between agents. We demonstrate our algorithm outperforms existing PDDL 2.1 planners in the case studies. Still, scalability remains challenging when plans must comply with intricate concurrent interactions and the sequencing of actions.
Related papers
- Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Capturing (Optimal) Relaxed Plans with Stable and Supported Models of
Logic Programs [4.020523898765405]
We show that given a planning problem, all subsets of actions that could be ordered to produce relaxed plans for the problem can be captured with stable models of a logic program.
We introduce one causal and one diagnostic encoding of the relaxed planning problem as logic programs, both capturing relaxed plans with their supported models.
arXiv Detail & Related papers (2023-06-08T09:34:38Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Anytime Stochastic Task and Motion Policies [12.72186877599064]
We present a new approach for integrated task and motion planning in settings.
Our algorithm is probabilistically complete and can compute feasible solution policies in an anytime fashion.
arXiv Detail & Related papers (2021-08-28T00:23:39Z) - Efficient Temporal Piecewise-Linear Numeric Planning with Lazy
Consistency Checking [4.834203844100679]
We propose a set of techniques that allow the planner to compute LP consistency checks lazily where possible.
We also propose an algorithm to perform duration-dependent goal checking more selectively.
The resultant planner is not only more efficient, but outperforms most state-of-the-art temporal-numeric and hybrid planners.
arXiv Detail & Related papers (2021-05-21T07:36:54Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - STRIPS Action Discovery [67.73368413278631]
Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
arXiv Detail & Related papers (2020-01-30T17:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.