Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency
- URL: http://arxiv.org/abs/2406.09675v1
- Date: Fri, 14 Jun 2024 02:56:57 GMT
- Title: Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency
- Authors: Ningyi Liao, Haoyu Liu, Zulun Zhu, Siqiang Luo, Laks V. S. Lakshmanan,
- Abstract summary: We extensively benchmark spectral GNNs with a focus on the frequency perspective.
We implement these spectral models under a unified framework with dedicated graph computations and efficient training schemes.
Our implementation enables application on larger graphs with comparable performance and less overhead.
- Score: 20.518170371888075
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their specialty in capturing graph signals in the frequency domain, demonstrating promising capability in specific tasks. However, few systematic studies have been conducted on assessing their spectral characteristics. This emerging family of models also varies in terms of designs and settings, leading to difficulties in comparing their performance and deciding on the suitable model for specific scenarios, especially for large-scale tasks. In this work, we extensively benchmark spectral GNNs with a focus on the frequency perspective. We analyze and categorize over 30 GNNs with 27 corresponding filters. Then, we implement these spectral models under a unified framework with dedicated graph computations and efficient training schemes. Thorough experiments are conducted on the spectral models with inclusive metrics on effectiveness and efficiency, offering practical guidelines on evaluating and selecting spectral GNNs with desirable performance. Our implementation enables application on larger graphs with comparable performance and less overhead, which is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark.
Related papers
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Characterizing and Understanding HGNN Training on GPUs [9.579848162902628]
Heterogeneous Graph Neural Networks (HGNNs) have been widely adopted in many real-world domains such as recommendation systems and medical analysis.
To enhance the efficiency of HGNN training, it is essential to characterize and analyze the execution semantics and patterns within the training process to identify performance bottlenecks.
arXiv Detail & Related papers (2024-07-16T14:45:46Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Characterizing the Efficiency of Graph Neural Network Frameworks with a
Magnifying Glass [10.839902229218577]
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks.
Recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs.
It is unknown how much the frameworks are 'eco-friendly' from a green computing perspective.
arXiv Detail & Related papers (2022-11-06T04:22:19Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Attention-Based Recommendation On Graphs [9.558392439655012]
Graph Neural Networks (GNN) have shown remarkable performance in different tasks.
In this study, we propose GARec as a model-based recommender system.
The presented method outperforms existing model-based, non-graph neural networks and graph neural networks in different MovieLens datasets.
arXiv Detail & Related papers (2022-01-04T21:02:02Z) - Spectral Graph Attention Network with Fast Eigen-approximation [103.93113062682633]
Spectral Graph Attention Network (SpGAT) learns representations for different frequency components regarding weighted filters and graph wavelets bases.
Fast approximation variant SpGAT-Cheby is proposed to reduce the computational cost brought by the eigen-decomposition.
We thoroughly evaluate the performance of SpGAT and SpGAT-Cheby in semi-supervised node classification tasks.
arXiv Detail & Related papers (2020-03-16T21:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.