論文の概要: Experiments in News Bias Detection with Pre-Trained Neural Transformers
- arxiv url: http://arxiv.org/abs/2406.09938v1
- Date: Fri, 14 Jun 2024 11:34:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:05:00.601709
- Title: Experiments in News Bias Detection with Pre-Trained Neural Transformers
- Title(参考訳): ニューラルトランスを用いたニュースバイアス検出実験
- Authors: Tim Menzner, Jochen L. Leidner,
- Abstract要約: 州俳優や商業選手は、偏見のある(歪んだ)情報や偽の(非現実的な)情報を広めて、彼らの議題を宣伝した。
文レベルのニュースバイアス検出とサブタイプ分類のタスクにおいて,事前学習した大規模言語モデルを比較した。
- 参考スコア(独自算出の注目度): 4.248837664338829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The World Wide Web provides unrivalled access to information globally, including factual news reporting and commentary. However, state actors and commercial players increasingly spread biased (distorted) or fake (non-factual) information to promote their agendas. We compare several large, pre-trained language models on the task of sentence-level news bias detection and sub-type classification, providing quantitative and qualitative results.
- Abstract(参考訳): World Wide Webは、事実報告やコメントなど、世界中の情報に未熟なアクセスを提供する。
しかし、州俳優や商業選手は次第に偏見のある(歪んだ)情報や偽の(非現実的な)情報を広めて、彼らのアジェンダを宣伝した。
文レベルのニュースバイアス検出とサブタイプ分類のタスクにおいて,いくつかの大規模で事前学習された言語モデルを比較し,定量的かつ質的な結果を提供する。
関連論文リスト
- Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions [0.7249731529275342]
本稿では,最近発表されたニュースメディアの信頼性評価手法の拡張を提案する。
大規模ニュースメディアハイパーリンクグラフ上での4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
論文 参考訳(メタデータ) (2024-10-23T08:18:26Z) - BiasScanner: Automatic Detection and Classification of News Bias to Strengthen Democracy [4.248837664338829]
BiasScannerは、ニュース消費者がオンラインで読んでいるニュース記事を精査することで、民主主義を強化することを目指している。
これには、ニュース記事のバイアスのある文を識別するサーバーサイドで事前訓練された大きな言語モデルと、フロントエンドのWebブラウザプラグインが含まれている。
論文 参考訳(メタデータ) (2024-07-15T15:42:22Z) - Predicting Sentence-Level Factuality of News and Bias of Media Outlets [10.925648034990306]
本稿では,AllSides が提案する事実とメディアバイアスの定義に基づいて,6,191 の注釈付き文からなる「FactNews」という文レベルの大規模データセットを提案する。
我々はFactNewsを用いて、ニュースメディアの文章レベルの事実性を予測するための2つのテキスト分類問題を定式化し、ニュースソースの全体的な信頼性を評価する。
論文 参考訳(メタデータ) (2023-01-27T16:56:24Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Demoting the Lead Bias in News Summarization via Alternating Adversarial
Learning [7.678864239473703]
ニュース記事において、リードバイアスは、通常、神経抽出要約器の学習信号を支配している一般的な現象である。
本稿では,リードバイアスを分解し,要約者がコンテンツセマンティクスにもっと焦点を合わせる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-29T07:40:59Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
公開されている言語モデルは、入力されたオリジナルニュースに基づいてバイアスのあるニュースコンテンツを確実に生成できることを示す。
また、制御可能なテキスト生成を用いて、多数の高品質な偏りのあるニュース記事を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-05T16:55:39Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。