論文の概要: TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data
- arxiv url: http://arxiv.org/abs/2406.10061v1
- Date: Fri, 14 Jun 2024 14:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:25:54.919064
- Title: TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data
- Title(参考訳): TACCO: EHRデータに基づく臨床概念と患者訪問のタスク誘導共同クラスタリング
- Authors: Ziyang Zhang, Hejie Cui, Ran Xu, Yuzhang Xie, Joyce C. Ho, Carl Yang,
- Abstract要約: TACCOは、EMHデータのハイパーグラフモデリングに基づいて、臨床概念と患者訪問のクラスターを共同で発見する新しいフレームワークである。
我々は,表現型分類と心血管リスク予測の下流臨床課題に対して,公共MIMIC-IIIデータセットとエモリー内部CRADLEデータセットを用いて実験を行った。
深層モデル解析,クラスタリング結果解析,臨床ケーススタディは,TACCOが提供した改良されたユーティリティと洞察に富んだ解釈をさらに検証する。
- 参考スコア(独自算出の注目度): 42.96821770394798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing availability of well-organized Electronic Health Records (EHR) data has enabled the development of various machine learning models towards disease risk prediction. However, existing risk prediction methods overlook the heterogeneity of complex diseases, failing to model the potential disease subtypes regarding their corresponding patient visits and clinical concept subgroups. In this work, we introduce TACCO, a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data. Specifically, we develop a novel self-supervised co-clustering framework that can be guided by the risk prediction task of specific diseases. Furthermore, we enhance the hypergraph model of EHR data with textual embeddings and enforce the alignment between the clusters of clinical concepts and patient visits through a contrastive objective. Comprehensive experiments conducted on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction demonstrate an average 31.25% performance improvement compared to traditional ML baselines and a 5.26% improvement on top of the vanilla hypergraph model without our co-clustering mechanism. In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO. Code is available at https://github.com/PericlesHat/TACCO.
- Abstract(参考訳): 組織化されたElectronic Health Records(EHR)データの増加により、さまざまな機械学習モデルの開発が可能となり、疾病リスクの予測が可能になった。
しかし、既存のリスク予測手法は、複雑な疾患の不均一性を見落とし、患者訪問や臨床概念のサブグループに関する潜在的な疾患のサブタイプをモデル化することができない。
本研究では,ERHデータのハイパーグラフモデリングに基づいて臨床概念と患者訪問のクラスターを共同で発見する新しいフレームワークであるTACCOを紹介する。
具体的には、特定の疾患のリスク予測タスクによってガイドできる、新しい自己監督型協調クラスタリングフレームワークを開発する。
さらに,テキスト埋め込みによるERHデータのハイパーグラフモデルを強化し,臨床概念のクラスタと患者訪問のアライメントを対照的な目的を通じて実施する。
MIMIC-IIIデータセットとエモリー内部CRADLEデータセットを用いて、表現型分類と心血管リスク予測の下流臨床課題に関する総合的な実験を行ったところ、従来のMLベースラインと比較して平均31.25%の性能改善が見られ、コクラスタリング機構のないバニラハイパーグラフモデルでは5.26%の改善が見られた。
深層モデル解析,クラスタリング結果解析,臨床ケーススタディは,TACCOが提供した改良されたユーティリティと洞察に富んだ解釈をさらに検証する。
コードはhttps://github.com/PericlesHat/TACCOで入手できる。
関連論文リスト
- Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
そこで本研究では,MIMIC-IIIデータセットから得られた構造化情報と非構造化情報を用いて学習したGNNモデルの結果を体系的に検証する手法を提案する。
本研究は,PKGにおける読み出し予測の課題に対する予測的特徴の同定におけるこのアプローチの堅牢性を示す。
論文 参考訳(メタデータ) (2024-08-27T09:48:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
我々は、電子健康記録データ上に不均一グラフモデル(HGM)をトレーニングし、結果の埋め込みベクトルをコナールニューラルネットワーク(CNN)モデルに追加情報として使用して、院内死亡率を予測する。
CNNモデルにHGMを追加すると、死亡予測精度が最大4%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-28T02:27:09Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
ヘテロジニアスEHRを処理するためのディープラーニングに基づく教師なしフレームワークを提案する。
患者層形成を効果的かつ効果的に行うことができる患者表現を導出する。
論文 参考訳(メタデータ) (2020-03-14T00:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。