論文の概要: Precipitation Nowcasting Using Physics Informed Discriminator Generative Models
- arxiv url: http://arxiv.org/abs/2406.10108v1
- Date: Fri, 14 Jun 2024 15:12:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:06:25.450017
- Title: Precipitation Nowcasting Using Physics Informed Discriminator Generative Models
- Title(参考訳): 物理インフォームド・ディスクリミネーター生成モデルによる降水ノウキャスティング
- Authors: Junzhe Yin, Cristian Meo, Ankush Roy, Zeineh Bou Cher, Yanbo Wang, Ruben Imhoff, Remko Uijlenhoet, Justin Dauwels,
- Abstract要約: PySTEPSを含む最先端のモデルでは、予測不可能な分布パターンのため、極端な気象事象を正確に予測するのは難しい。
オランダ王立気象研究所の降水データと気象データを用いて降水流しを行う物理インフォームニューラルネットワークを設計する。
以上の結果から,PID-GANモデルは降水量で数値およびSOTA深部生成モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 9.497627628556875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowcasting leverages real-time atmospheric conditions to forecast weather over short periods. State-of-the-art models, including PySTEPS, encounter difficulties in accurately forecasting extreme weather events because of their unpredictable distribution patterns. In this study, we design a physics-informed neural network to perform precipitation nowcasting using the precipitation and meteorological data from the Royal Netherlands Meteorological Institute (KNMI). This model draws inspiration from the novel Physics-Informed Discriminator GAN (PID-GAN) formulation, directly integrating physics-based supervision within the adversarial learning framework. The proposed model adopts a GAN structure, featuring a Vector Quantization Generative Adversarial Network (VQ-GAN) and a Transformer as the generator, with a temporal discriminator serving as the discriminator. Our findings demonstrate that the PID-GAN model outperforms numerical and SOTA deep generative models in terms of precipitation nowcasting downstream metrics.
- Abstract(参考訳): Nowcastingは、短時間で天気を予測するために、リアルタイムの大気条件を活用している。
PySTEPSを含む最先端のモデルでは、予測不可能な分布パターンのため、極端な気象事象を正確に予測するのは難しい。
本研究では,オランダ王立気象研究所(KNMI)の降水量と気象データを用いて降水流しを行う物理情報ニューラルネットワークを設計した。
このモデルは、新しいPID-GAN(Pilsical-Informed Discriminator GAN)の定式化からインスピレーションを得て、逆学習フレームワークに物理に基づく監督を直接統合する。
提案モデルでは,ベクトル量子化生成逆数ネットワーク(VQ-GAN)とトランスフォーマー(Transformer)をジェネレータとして備えたGAN構造を採用した。
以上の結果から,PID-GANモデルは降水量で数値およびSOTA深部生成モデルよりも優れていた。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - Extreme Precipitation Nowcasting using Transformer-based Generative
Models [9.497627628556875]
本稿では,Transformer ベースの生成モデル,すなわち NowcastingGPT with Extreme Value Loss (EVL) regularization を用いることにより,極端降水量減少に対する革新的なアプローチを提案する。
固定された極端表現を仮定せずにEVLを計算するための新しい手法を導入し、極端気象事象を捉える際の現在のモデルの限界に対処する。
本稿では, 降水量の定性的および定量的な分析を行い, 正確な降水予測を生成する上で, 提案した NowcastingGPT-EVL の優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-06T18:39:41Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
リカレントと畳み込み型ディープニューラルネットワーク構造を用いて、降水流の課題に対処する。
GPM (Global Precipitation Measurement, GPM) 統合マルチサテライトE(Multi-SatellitE Retrievals) を用いて、米国東部大陸の降水量データ(IMERG)を用いて、合計5つのモデルを訓練した。
また, 予測時間を最大1.5時間, フィードバックループアプローチを用いて4.5時間まで延長できるモデルについても検討した。
論文 参考訳(メタデータ) (2021-08-16T02:55:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。