COVID-19 Twitter Sentiment Classification Using Hybrid Deep Learning Model Based on Grid Search Methodology
- URL: http://arxiv.org/abs/2406.10266v1
- Date: Tue, 11 Jun 2024 07:48:06 GMT
- Title: COVID-19 Twitter Sentiment Classification Using Hybrid Deep Learning Model Based on Grid Search Methodology
- Authors: Jitendra Tembhurne, Anant Agrawal, Kirtan Lakhotia,
- Abstract summary: The sentiment prediction is achieved using embedding, deep learning model and grid search algorithm on Twitter COVID-19 dataset.
According to the study, public sentiment towards COVID-19 immunization appears to be improving with time.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the contemporary era, social media platforms amass an extensive volume of social data contributed by their users. In order to promptly grasp the opinions and emotional inclinations of individuals regarding a product or event, it becomes imperative to perform sentiment analysis on the user-generated content. Microblog comments often encompass both lengthy and concise text entries, presenting a complex scenario. This complexity is particularly pronounced in extensive textual content due to its rich content and intricate word interrelations compared to shorter text entries. Sentiment analysis of public opinion shared on social networking websites such as Facebook or Twitter has evolved and found diverse applications. However, several challenges remain to be tackled in this field. The hybrid methodologies have emerged as promising models for mitigating sentiment analysis errors, particularly when dealing with progressively intricate training data. In this article, to investigate the hesitancy of COVID-19 vaccination, we propose eight different hybrid deep learning models for sentiment classification with an aim of improving overall accuracy of the model. The sentiment prediction is achieved using embedding, deep learning model and grid search algorithm on Twitter COVID-19 dataset. According to the study, public sentiment towards COVID-19 immunization appears to be improving with time, as evidenced by the gradual decline in vaccine reluctance. Through extensive evaluation, proposed model reported an increased accuracy of 98.86%, outperforming other models. Specifically, the combination of BERT, CNN and GS yield the highest accuracy, while the combination of GloVe, BiLSTM, CNN and GS follows closely behind with an accuracy of 98.17%. In addition, increase in accuracy in the range of 2.11% to 14.46% is reported by the proposed model in comparisons with existing works.
Related papers
- Understanding writing style in social media with a supervised
contrastively pre-trained transformer [57.48690310135374]
Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation.
We introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 106 authored texts.
Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80% accuracy.
arXiv Detail & Related papers (2023-10-17T09:01:17Z) - Political Sentiment Analysis of Persian Tweets Using CNN-LSTM Model [0.356008609689971]
We present several machine learning and a deep learning model to analysis sentiment of Persian political tweets.
Deep learning with ParsBERT embedding performs better than machine learning.
arXiv Detail & Related papers (2023-07-15T08:08:38Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
We develop a self-learning model to explore the constrastive learning in the domain of misinformation identification.
Our model shows the superior performance of non-matched image-text pair detection when the training data is insufficient.
arXiv Detail & Related papers (2023-04-19T02:53:59Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
We show that meaning-preserving changes in input text can mislead the models.
We also introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - Two-Stage Classifier for COVID-19 Misinformation Detection Using BERT: a
Study on Indonesian Tweets [0.15229257192293202]
Research on COVID-19 misinformation detection in Indonesia is still scarce.
In this study, we propose the two-stage classifier model using IndoBERT pre-trained language model for the Tweet misinformation detection task.
The experimental results show that the combination of the BERT sequence classifier for relevance prediction and Bi-LSTM for misinformation detection outperformed other machine learning models with an accuracy of 87.02%.
arXiv Detail & Related papers (2022-06-30T15:33:20Z) - Twitter conversations predict the daily confirmed COVID-19 cases [0.2320417845168326]
Pandemic-specific discourse has remained on-trend on microblogging platforms such as Twitter and Weibo.
We propose a sentiment-involved topic-based methodology for designing multiple time series from publicly available COVID-19 related Twitter conversations.
We show that the inclusion of social media variables for modeling introduces 48.83--51.38% improvements on RMSE over the baseline models.
arXiv Detail & Related papers (2022-06-21T15:31:06Z) - Multi-channel CNN to classify nepali covid-19 related tweets using
hybrid features [1.713291434132985]
We represent each tweet by combining both syntactic and semantic information, called hybrid features.
We design a novel multi-channel convolutional neural network (MCNN), which ensembles the multiple CNNs.
We evaluate the efficacy of both the proposed feature extraction method and the MCNN model classifying tweets on NepCOV19Tweets dataset.
arXiv Detail & Related papers (2022-03-19T09:55:05Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Checkovid: A COVID-19 misinformation detection system on Twitter using
network and content mining perspectives [9.69596041242667]
During the COVID-19 pandemic, social media platforms were ideal for communicating due to social isolation and quarantine.
To tackle this problem, we present two COVID-19 related misinformation datasets on Twitter.
We propose a misinformation detection system comprising network-based and content-based processes based on machine learning algorithms and NLP techniques.
arXiv Detail & Related papers (2021-07-20T20:58:23Z) - Can x2vec Save Lives? Integrating Graph and Language Embeddings for
Automatic Mental Health Classification [91.3755431537592]
I show how merging graph and language embedding models (metapath2vec and doc2vec) avoids resource limits.
When integrated, both data produce highly accurate predictions (90%, with 10% false-positives and 12% false-negatives)
These results extend research on the importance of simultaneously analyzing behavior and language in massive networks.
arXiv Detail & Related papers (2020-01-04T20:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.