論文の概要: Beyond Words: On Large Language Models Actionability in Mission-Critical Risk Analysis
- arxiv url: http://arxiv.org/abs/2406.10273v1
- Date: Tue, 11 Jun 2024 19:20:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 01:21:32.629738
- Title: Beyond Words: On Large Language Models Actionability in Mission-Critical Risk Analysis
- Title(参考訳): 言葉を超えて: ミッションクリティカルリスク分析における大規模言語モデルでの行動可能性
- Authors: Matteo Esposito, Francesco Palagiano, Valentina Lenarduzzi,
- Abstract要約: リスク分析の原則はコンテキストレスです。
リスク分析には、国内外の規制や基準に関する膨大な知識が必要である。
大規模な言語モデルは、人間よりも少ない時間で情報を素早く要約することができ、特定のタスクに微調整することができる。
- 参考スコア(独自算出の注目度): 4.49517541590633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context. Risk analysis assesses potential risks in specific scenarios. Risk analysis principles are context-less; the same methodology can be applied to a risk connected to health and information technology security. Risk analysis requires a vast knowledge of national and international regulations and standards and is time and effort-intensive. A large language model can quickly summarize information in less time than a human and can be fine-tuned to specific tasks. Aim. Our empirical study aims to investigate the effectiveness of Retrieval-Augmented Generation and fine-tuned LLM in Risk analysis. To our knowledge, no prior study has explored its capabilities in risk analysis. Method. We manually curated \totalscenarios unique scenarios leading to \totalsamples representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years. We compared the base GPT-3.5 and GPT-4 models versus their Retrieval-Augmented Generation and fine-tuned counterparts. We employ two human experts as competitors of the models and three other three human experts to review the models and the former human expert's analysis. The reviewers analyzed 5,000 scenario analyses. Results and Conclusions. HEs demonstrated higher accuracy, but LLMs are quicker and more actionable. Moreover, our findings show that RAG-assisted LLMs have the lowest hallucination rates, effectively uncovering hidden risks and complementing human expertise. Thus, the choice of model depends on specific needs, with FTMs for accuracy, RAG for hidden risks discovery, and base models for comprehensiveness and actionability. Therefore, experts can leverage LLMs for an effective complementing companion in risk analysis within a condensed timeframe. They can also save costs by averting unnecessary expenses associated with implementing unwarranted countermeasures.
- Abstract(参考訳): コンテキスト。
リスク分析は特定のシナリオにおける潜在的なリスクを評価する。
リスク分析の原則は、コンテキストレスであり、同じ方法論を、健康や情報技術のセキュリティに関連するリスクに適用することができる。
リスク分析には、国内外の規制や基準に関する膨大な知識が必要であり、時間と努力が集中している。
大きな言語モデルは、人間よりも少ない時間で情報を素早く要約することができ、特定のタスクに微調整することができる。
エイム。
本研究は,リスク分析における検索・拡張型LLMと微調整型LLMの有効性を検討することを目的とした実証研究である。
我々の知る限り、リスク分析の能力について事前の研究は行われていない。
方法。
我々は過去5年間に産業状況チームによってアーカイブされた50以上のミッションクリティカルな分析結果から,‘totalscenarios’というユニークなシナリオを手作業でキュレートした。
基本モデルであるGPT-3.5とGPT-4とRetrieval-Augmented Generationおよび微調整モデルを比較した。
我々は、モデルの競合相手として2人の人間専門家と、3人の人間専門家を雇い、モデルと以前の人間専門家の分析をレビューします。
審査員は5000のシナリオ分析を行った。
結果と結論。
HEsは高い精度を示したが、LSMsはより速く、より実用的な。
さらに,RAG支援LSMが最も低い幻覚率を示し,隠れたリスクを効果的に発見し,人間の専門知識を補完することを示した。
したがって、モデルの選択は、正確性のためのFTM、隠れたリスク発見のためのRAG、包括性と行動可能性のためのベースモデルなど、特定のニーズに依存する。
したがって、専門家はLLMを、凝縮した時間枠内でのリスク分析を効果的に補完するコンパニオンとして活用することができる。
また、不当な対策の実施に伴う不要な費用を回避することでコストを削減できる。
関連論文リスト
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Quantifying Risk Propensities of Large Language Models: Ethical Focus and Bias Detection through Role-Play [0.43512163406552007]
大きな言語モデル(LLM)がより普及するにつれて、その安全性、倫理、潜在的なバイアスに対する懸念が高まっている。
本研究は,認知科学からLLMまで,Domain-Specific Risk-Taking(DOSPERT)尺度を革新的に適用する。
本研究では,LLMの倫理的リスク態度を深く評価するために,倫理的意思決定リスク態度尺度(EDRAS)を提案する。
論文 参考訳(メタデータ) (2024-10-26T15:55:21Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - CRiskEval: A Chinese Multi-Level Risk Evaluation Benchmark Dataset for Large Language Models [46.93425758722059]
CRiskEvalは、大規模言語モデル(LLM)に固有のリスク確率を正確に計測するために設計された中国のデータセットである。
7種類のフロンティアリスクと4つの安全性レベルを持つ新たなリスク分類を定義する。
データセットは、事前に定義された7種類のフロンティアリスクに関連するシナリオをシミュレートする14,888の質問で構成されている。
論文 参考訳(メタデータ) (2024-06-07T08:52:24Z) - ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation [48.54271457765236]
大規模言語モデル(LLM)は、人間の価値観と不一致した場合、意図しない、有害なコンテンツも引き出すことができる。
現在の評価ベンチマークでは、LLMが人的価値とどの程度うまく一致しているかを評価するために、専門家が設計した文脈シナリオが採用されている。
本研究では, LLM エージェントの自律的能力を活用し, 奥行き及び適応的アライメント評価を行う評価フレームワーク ALI-Agent を提案する。
論文 参考訳(メタデータ) (2024-05-23T02:57:42Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Leveraging Large Language Models for Preliminary Security Risk Analysis: A Mission-Critical Case Study [0.0]
PSRAにおけるヒトの専門家の速度と精度は応答時間に大きく影響した。
PSRAにおける細調整モデル(FTM)の能力について先行研究は行われていない。
提案手法は,PSRAの誤りの低減,セキュリティリスク検出の迅速化,偽陽性と否定の最小化に成功している。
論文 参考訳(メタデータ) (2024-03-23T07:59:30Z) - Risk and Response in Large Language Models: Evaluating Key Threat Categories [6.436286493151731]
本稿では,Large Language Models (LLMs) におけるリスクアセスメントのプレッシャーについて考察する。
人為的レッドチームデータセットを利用することで、情報ハザード、悪用、差別/憎しみのあるコンテンツなど、主要なリスクカテゴリを分析します。
以上の結果から,LSMは情報ハザードを有害とみなす傾向があることが示唆された。
論文 参考訳(メタデータ) (2024-03-22T06:46:40Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。