論文の概要: Efficient Prompting for LLM-based Generative Internet of Things
- arxiv url: http://arxiv.org/abs/2406.10382v2
- Date: Tue, 18 Jun 2024 01:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:01:13.707618
- Title: Efficient Prompting for LLM-based Generative Internet of Things
- Title(参考訳): LLMを用いた生成物のインターネットのための効率的なプロンプト
- Authors: Bin Xiao, Burak Kantarci, Jiawen Kang, Dusit Niyato, Mohsen Guizani,
- Abstract要約: 大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
- 参考スコア(独自算出の注目度): 88.84327500311464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently. Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting. However, open-source LLMs usually have more limitations regarding their performance, such as their arithmetic calculation and reasoning capacities, and practical systems of applying LLMs to IoT have yet to be well-explored. Therefore, we propose a text-based generative IoT (GIoT) system deployed in the local network setting in this study. To alleviate the limitations of LLMs and provide service with competitive performance, we apply prompt engineering methods to enhance the capacities of the open-source LLMs, design a Prompt Management Module and a Post-processing Module to manage the tailored prompts for different tasks and process the results generated by the LLMs. To demonstrate the effectiveness of the proposed system, we discuss a challenging Table Question Answering (Table-QA) task as a case study of the proposed system, as tabular data is usually more challenging than plain text because of their complex structures, heterogeneous data types and sometimes huge sizes. We conduct comprehensive experiments on two popular Table-QA datasets, and the results show that our proposal can achieve competitive performance compared with state-of-the-art LLMs, demonstrating that the proposed LLM-based GIoT system can provide competitive performance with tailored prompting methods and is easily extensible to new tasks without training.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
しかしながら、オープンソースのLLMは、算術計算や推論能力など、パフォーマンスに関する制限がより多く、IoTにLLMを適用する実践的なシステムは、まだ十分に研究されていない。
そこで本研究では,ローカルネットワーク環境に展開するテキストベースの生成IoT(GIoT)システムを提案する。
LLMの限界を緩和し、競争性能を提供するために、オープンソースのLLMの能力を高めるためにプロンプトエンジニアリング手法を適用し、プロンプト管理モジュールと後処理モジュールを設計し、異なるタスクの調整されたプロンプトを管理し、LLMが生成した結果を処理する。
提案手法の有効性を示すために,提案方式のケーススタディとして,テーブル質問回答(Table-QA)課題について論じる。
提案手法は2種類のTable-QAデータセットに対して総合的な実験を行い,提案手法は最先端のLCMと競合する性能を達成可能であることを示した。
関連論文リスト
- SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
大規模言語モデル(LLM)の訓練には、かなりの計算資源が必要である。
既存の公開LLMは通常、さまざまなタスクにまたがる、多種多様なプライベートにキュレートされたデータセットで事前トレーニングされる。
論文 参考訳(メタデータ) (2024-07-11T05:38:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
大規模言語モデル (LLM) は、様々な応用において人間のような文章を解釈・生成する能力を持つ非常に強力な機器となっている。
しかし、LLMのサイズと複雑さの増大は、トレーニングとデプロイメントの両方において大きな課題をもたらしている。
これらの課題に対処するための最近の進歩と研究の方向性について概観する。
論文 参考訳(メタデータ) (2024-06-16T11:56:50Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
物理層をインテリジェントに制御し,アプリケーション層との相互作用を効果的に行うことを目的として,LLMを利用した光ネットワークのフレームワークを提案する。
提案手法は,ネットワークアラーム解析とネットワーク性能最適化の2つの典型的なタスクで検証される。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-14T10:46:33Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
大きな言語モデル(LLM)は、ゼロショットで自然言語の意図を与えられたコードスニペットを生成する。
従来の研究は、タスク固有のプロンプト例でLLM生成プロセスを導く戦略として、インコンテキストラーニング(ICL)を探求していた。
本稿では,本論文の総合的研究について述べる。
自動コード生成シナリオにおけるLLMのためのPEFT技術。
論文 参考訳(メタデータ) (2023-08-21T04:31:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。