論文の概要: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference
- arxiv url: http://arxiv.org/abs/2406.10455v1
- Date: Sat, 15 Jun 2024 00:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:22:43.658606
- Title: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference
- Title(参考訳): 半補正ポス推論によるAb-initio Cryo-EM再構成の改善
- Authors: Shayan Shekarforoush, David B. Lindell, Marcus A. Brubaker, David J. Fleet,
- Abstract要約: 2D画像からの非初期3D再構成では、構造に加えてポーズを推定する必要がある。
まずマルチヘッドアーキテクチャをポーズエンコーダとして採用し、画像ごとの複数の可視的なポーズを償却的に推測する。
我々のアプローチは最先端のCryoAIよりも高速で、高解像度の再構築を実現している。
- 参考スコア(独自算出の注目度): 30.195615398809043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryo-Electron Microscopy (cryo-EM) is an increasingly popular experimental technique for estimating the 3D structure of macromolecular complexes such as proteins based on 2D images. These images are notoriously noisy, and the pose of the structure in each image is unknown \textit{a priori}. Ab-initio 3D reconstruction from 2D images entails estimating the pose in addition to the structure. In this work, we propose a new approach to this problem. We first adopt a multi-head architecture as a pose encoder to infer multiple plausible poses per-image in an amortized fashion. This approach mitigates the high uncertainty in pose estimation by encouraging exploration of pose space early in reconstruction. Once uncertainty is reduced, we refine poses in an auto-decoding fashion. In particular, we initialize with the most likely pose and iteratively update it for individual images using stochastic gradient descent (SGD). Through evaluation on synthetic datasets, we demonstrate that our method is able to handle multi-modal pose distributions during the amortized inference stage, while the later, more flexible stage of direct pose optimization yields faster and more accurate convergence of poses compared to baselines. Finally, on experimental data, we show that our approach is faster than state-of-the-art cryoAI and achieves higher-resolution reconstruction.
- Abstract(参考訳): クライオ・エレクトロン顕微鏡(Cryo-Electron Microscopy, Cryo-EM)は、タンパク質などの高分子複合体の3次元構造を2次元画像に基づいて推定する実験手法として人気が高まっている。
これらの画像は騒々しいことで知られており、各画像の構造のポーズは未知の \textit{a priori} である。
2D画像からの非初期3D再構成では、構造に加えてポーズを推定する必要がある。
本研究では,この問題に対する新しいアプローチを提案する。
まずマルチヘッドアーキテクチャをポーズエンコーダとして採用し、画像ごとの複数の可視的なポーズを償却的に推測する。
提案手法は, 復元初期におけるポーズ空間の探索を奨励することにより, ポーズ推定における高い不確実性を緩和する。
不確実性が減ると、自動デコード方式でポーズを洗練します。
特に、最も可能性の高いポーズを初期化し、確率勾配降下(SGD)を用いて個々の画像に対して反復的に更新する。
提案手法は, 合成データセットの評価により, 償却推論段階において多モードのポーズ分布を処理できることを実証する一方, 後続のより柔軟な直接ポーズ最適化段階は, ベースラインと比較してより高速で正確なポーズ収束を得られることを示した。
最後に,本手法が最先端のCryoAIよりも高速であり,高分解能の再構築を実現することを示す。
関連論文リスト
- Latent Diffusion Prior Enhanced Deep Unfolding for Spectral Image
Reconstruction [19.1301471218022]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
本稿では,自己教師付き変分オートエンコーダアーキテクチャであるHetACUMNを提案する。
シミュレーションデータセットの結果,HetACUMNは,他のアモータイズ法や非アモータイズ法よりも正確なコンフォメーション分類が得られた。
論文 参考訳(メタデータ) (2023-08-09T13:41:30Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from
Sparse Image Ensemble [72.3681707384754]
Hi-LASSIEは、ユーザーが定義した形状やスケルトンテンプレートを使わずに、野生の20~30のオンライン画像から3Dで再現する。
まず,手動でアノテートした3Dスケルトンに頼る代わりに,選択した基準画像からクラス固有のスケルトンを自動的に推定する。
第二に、各インスタンスに忠実に適合する新しいインスタンス固有の最適化戦略により、形状再構成を改善する。
論文 参考訳(メタデータ) (2022-12-21T14:31:33Z) - HandFlow: Quantifying View-Dependent 3D Ambiguity in Two-Hand
Reconstruction with Normalizing Flow [73.7895717883622]
条件付き正規化フローフレームワークにおける可塑性再構成の分布を明示的にモデル化する。
この課題に対して,明示的な曖昧さモデリングが適していることを示す。
論文 参考訳(メタデータ) (2022-10-04T15:42:22Z) - 3D Magic Mirror: Clothing Reconstruction from a Single Image via a
Causal Perspective [96.65476492200648]
本研究は, 自己監督型3D衣料の再構築手法について検討することを目的とする。
1枚の2D画像から人間の衣服の形状やテクスチャを復元する。
論文 参考訳(メタデータ) (2022-04-27T17:46:55Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
本稿では、オブジェクトポーズ改善のためのリカレントニューラルネットワーク(RNN)に基づくフレームワークを提案する。
この問題は、推定対応フィールドに基づいて非線形最小二乗問題として定式化される。
各イテレーションにおいて、対応フィールド推定とポーズ精錬を代替して行い、正確なオブジェクトポーズを復元する。
論文 参考訳(メタデータ) (2022-03-24T06:24:55Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization [22.5033027930853]
スナップショットハイパースペクトルイメージングは、単一の2D測定で3Dハイパースペクトル画像(HSI)をキャプチャできます。
既存の復元方法は、3D HSIの構造的スペクトル空間的性質を完全に利用することはできない。
スナップショットハイパースペクトル画像の再構成精度を高めるために,高次テンソル最適化法を提案する。
論文 参考訳(メタデータ) (2021-01-22T02:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。