論文の概要: Fast and robust single particle reconstruction in 3D fluorescence
microscopy
- arxiv url: http://arxiv.org/abs/2301.09452v1
- Date: Mon, 23 Jan 2023 14:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:25:15.786896
- Title: Fast and robust single particle reconstruction in 3D fluorescence
microscopy
- Title(参考訳): 3次元蛍光顕微鏡による高速かつロバストな単一粒子再構成
- Authors: Thibaut Eloy, Etienne Baudrier, Marine Laporte, Virginie Hamel, Paul
Guichard, Denis Fortun
- Abstract要約: 単一粒子再構成は、軸方向分解能と蛍光標識の度合いを改善するための強力な技術である。
3次元蛍光顕微鏡における畳み込みモデル専用の単一粒子再構成法を提案する。
計算コストを低く抑えつつ,分解能および再構成誤差の観点から合成手法を実証する。
- 参考スコア(独自算出の注目度): 1.0625549557437526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single particle reconstruction has recently emerged in 3D fluorescence
microscopy as a powerful technique to improve the axial resolution and the
degree of fluorescent labeling. It is based on the reconstruction of an average
volume of a biological particle from the acquisition multiple views with
unknown poses. Current methods are limited either by template bias, restriction
to 2D data, high computational cost or a lack of robustness to low fluorescent
labeling. In this work, we propose a single particle reconstruction method
dedicated to convolutional models in 3D fluorescence microscopy that overcome
these issues. We address the joint reconstruction and estimation of the poses
of the particles, which translates into a challenging non-convex optimization
problem. Our approach is based on a multilevel reformulation of this problem,
and the development of efficient optimization techniques at each level. We
demonstrate on synthetic data that our method outperforms the standard
approaches in terms of resolution and reconstruction error, while achieving a
low computational cost. We also perform successful reconstruction on real
datasets of centrioles to show the potential of our method in concrete
applications.
- Abstract(参考訳): 単一粒子の再構成は3次元蛍光顕微鏡において軸分解能と蛍光標識の程度を改善する強力な技術として最近登場している。
これは、未知のポーズによる複数の視点の獲得から生物粒子の平均体積を再構成することに基づいている。
現在の手法は、テンプレートバイアス、2次元データに対する制限、高い計算コスト、低蛍光ラベリングに対する堅牢性の欠如によって制限されている。
本研究では,これらの問題を克服する3次元蛍光顕微鏡における畳み込みモデル専用の単一粒子再構成法を提案する。
本稿では,粒子のポーズの同時再構成と推定について検討し,非凸最適化問題へと変換する。
提案手法は,この問題の多段階的修正と,各レベルにおける効率的な最適化手法の開発に基づいている。
提案手法は, 計算コストを低く抑えながら, 分解能および再構成誤差の点で, 標準的な手法よりも優れた合成データを示す。
また,本手法の具体的応用の可能性を示すために,実際のセントリルデータセットの再構築に成功した。
関連論文リスト
- Latent Diffusion Prior Enhanced Deep Unfolding for Spectral Image
Reconstruction [19.1301471218022]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
本稿では、参照データや劣化過程に関する事前知識の制限を克服する拡散モデルに基づくフレームワークを提案する。
提案手法では, 2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し, 高精度なサンプルデータに適している。
論文 参考訳(メタデータ) (2023-08-03T07:57:02Z) - DiffuseIR:Diffusion Models For Isotropic Reconstruction of 3D
Microscopic Images [20.49786054144047]
拡散モデルに基づく等方的再構成の教師なし手法であるDiffuseIRを提案する。
まず,側方顕微鏡画像から生体組織の構造分布を学習するために,拡散モデルの事前学習を行う。
次に、低軸分解能顕微鏡画像を用いて拡散モデルの生成過程を定式化し、高軸分解能再構成結果を生成する。
論文 参考訳(メタデータ) (2023-06-21T08:49:28Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens(ニューロレンス)は、点投影と光線鋳造に使用できる歪みと磁化のための神経レンズモデルである。
古典的なキャリブレーションターゲットを使用してプリキャプチャのキャリブレーションを行うことができ、後に3D再構成の際にキャリブレーションやリファインメントを行うために使用できる。
このモデルは、多くのレンズタイプにまたがって一般化されており、既存の3D再構成とレンダリングシステムとの統合は容易である。
論文 参考訳(メタデータ) (2023-04-10T20:09:17Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
トモグラフィー問題に対する遺伝的および機械学習アプローチの適用について検討する。
ニューラルネットワークベースのスキームは、リアルタイムにキャラクタリゼーションを必要とするアプリケーションにおいて、重要なスピードアップを提供する。
これらの結果は、より一般的な量子プロセスにおけるトモグラフィーアプローチの最適化の基礎となることを期待する。
論文 参考訳(メタデータ) (2022-10-27T11:37:14Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D
Molecular Volumes from Real Cryo-EM Images [30.738209997049395]
粒子ポーズの勾配に基づく最適化と単一粒子Creo-EMデータからの電子散乱電位を用いた等質コンフォーメーションのためのアブイニシアト再構成アルゴリズムであるCreoAIを紹介する。
CryoAIは、シミュレーションデータと実験データの両方に対して、最先端のCryo-EMソルバと同等の結果を得る。
論文 参考訳(メタデータ) (2022-03-15T17:58:03Z) - Low dosage 3D volume fluorescence microscopy imaging using compressive
sensing [0.0]
本稿では, 圧縮センシングによる3Dボリュームの完全再構成を, 励起量の半分未満のSNRで行う方法を提案する。
ゼブラフィッシュ胚脊髄のRFP標識ニューロンの3次元体積を, 共焦点顕微鏡を用いて0.1umの軸方向サンプリングにより計測し, 本手法の実証を行った。
この研究で開発されたCSベースの手法は、2光子や光シート顕微鏡などの他の深部イメージングに容易に適用でき、サンプル光毒性の低減は重要な課題である。
論文 参考訳(メタデータ) (2022-01-03T18:44:50Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。