A Label is Worth a Thousand Images in Dataset Distillation
- URL: http://arxiv.org/abs/2406.10485v1
- Date: Sat, 15 Jun 2024 03:30:29 GMT
- Title: A Label is Worth a Thousand Images in Dataset Distillation
- Authors: Tian Qin, Zhiwei Deng, David Alvarez-Melis,
- Abstract summary: Data $textitquality$ is a crucial factor in the performance of machine learning models.
We show that the main factor explaining the performance of state-of-the-art distillation methods is not the techniques used to generate synthetic data but rather the use of soft labels.
- Score: 16.272675455429006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data $\textit{quality}$ is a crucial factor in the performance of machine learning models, a principle that dataset distillation methods exploit by compressing training datasets into much smaller counterparts that maintain similar downstream performance. Understanding how and why data distillation methods work is vital not only for improving these methods but also for revealing fundamental characteristics of "good" training data. However, a major challenge in achieving this goal is the observation that distillation approaches, which rely on sophisticated but mostly disparate methods to generate synthetic data, have little in common with each other. In this work, we highlight a largely overlooked aspect common to most of these methods: the use of soft (probabilistic) labels. Through a series of ablation experiments, we study the role of soft labels in depth. Our results reveal that the main factor explaining the performance of state-of-the-art distillation methods is not the specific techniques used to generate synthetic data but rather the use of soft labels. Furthermore, we demonstrate that not all soft labels are created equal; they must contain $\textit{structured information}$ to be beneficial. We also provide empirical scaling laws that characterize the effectiveness of soft labels as a function of images-per-class in the distilled dataset and establish an empirical Pareto frontier for data-efficient learning. Combined, our findings challenge conventional wisdom in dataset distillation, underscore the importance of soft labels in learning, and suggest new directions for improving distillation methods. Code for all experiments is available at https://github.com/sunnytqin/no-distillation.
Related papers
- Label-Augmented Dataset Distillation [13.449340904911725]
We introduce Label-Augmented dataset Distillation (LADD) to enhance dataset distillation with label augmentations.
LADD sub-samples each synthetic image, generating additional dense labels to capture rich semantics.
With three high-performance dataset distillation algorithms, LADD achieves remarkable gains by an average of 14.9% in accuracy.
arXiv Detail & Related papers (2024-09-24T16:54:22Z) - Heavy Labels Out! Dataset Distillation with Label Space Lightening [69.67681224137561]
HeLlO aims at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images.
We demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets.
arXiv Detail & Related papers (2024-08-15T15:08:58Z) - Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
arXiv Detail & Related papers (2023-05-28T06:53:41Z) - Explicit and Implicit Knowledge Distillation via Unlabeled Data [5.702176304876537]
We propose an efficient unlabeled sample selection method to replace high computational generators.
We also propose a class-dropping mechanism to suppress the label noise caused by the data domain shifts.
Experimental results show that our method can quickly converge and obtain higher accuracy than other state-of-the-art methods.
arXiv Detail & Related papers (2023-02-17T09:10:41Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
It has become challenging to handle the unlimited growth of data with limited computing power.
Deep learning technology has developed unprecedentedly in the last decade.
This paper provides a holistic understanding of dataset distillation from multiple aspects.
arXiv Detail & Related papers (2023-01-13T15:11:38Z) - Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation [77.34726150561087]
This article explores various data distillation techniques that can reduce the amount of data required to successfully train deep networks.
Inspired by recent ideas, we suggest new data distillation techniques based on generative teaching networks, gradient matching, and the Implicit Function Theorem.
arXiv Detail & Related papers (2022-03-16T11:45:32Z) - Conditional Generative Data-Free Knowledge Distillation based on
Attention Transfer [0.8594140167290099]
We propose a conditional generative data-free knowledge distillation (CGDD) framework to train efficient portable network without any real data.
In this framework, except using the knowledge extracted from teacher model, we introduce preset labels as additional auxiliary information.
We show that trained portable network learned with proposed data-free distillation method obtains 99.63%, 99.07% and 99.84% relative accuracy on CIFAR10, CIFAR100 and Caltech101.
arXiv Detail & Related papers (2021-12-31T09:23:40Z) - Flexible Dataset Distillation: Learn Labels Instead of Images [44.73351338165214]
Distilling labels with our new algorithm leads to improved results over prior image-based distillation.
We show it to be more effective than the prior image-based approach to dataset distillation.
arXiv Detail & Related papers (2020-06-15T17:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.