Large Language Models as Event Forecasters
- URL: http://arxiv.org/abs/2406.10492v1
- Date: Sat, 15 Jun 2024 04:09:31 GMT
- Title: Large Language Models as Event Forecasters
- Authors: Libo Zhang, Yue Ning,
- Abstract summary: Key elements of human events are extracted as quadruples that consist of subject, relation, object, and timestamp.
These quadruples or quintuples, when organized within a specific domain, form a temporal knowledge graph (TKG)
- Score: 10.32127659470566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Key elements of human events are extracted as quadruples that consist of subject, relation, object, and timestamp. This representation can be extended to a quintuple by adding a fifth element: a textual summary that briefly describes the event. These quadruples or quintuples, when organized within a specific domain, form a temporal knowledge graph (TKG). Current learning frameworks focus on a few TKG-related tasks, such as predicting an object given a subject and a relation or forecasting the occurrences of multiple types of events (i.e., relation) in the next time window. They typically rely on complex structural and sequential models like graph neural networks (GNNs) and recurrent neural networks (RNNs) to update intermediate embeddings. However, these methods often neglect the contextual information inherent in each quintuple, which can be effectively captured through concise textual descriptions. In this paper, we investigate how large language models (LLMs) can streamline the design of TKG learning frameworks while maintaining competitive accuracy in prediction and forecasting tasks. We develop multiple prompt templates to frame the object prediction (OP) task as a standard question-answering (QA) task, suitable for instruction fine-tuning with an encoder-decoder generative LLM. For multi-event forecasting (MEF), we design simple yet effective prompt templates for each TKG quintuple. This novel approach removes the need for GNNs and RNNs, instead utilizing an encoder-only LLM to generate fixed intermediate embeddings, which are subsequently processed by a prediction head with a self-attention mechanism to forecast potential future relations. Extensive experiments on multiple real-world datasets using various evaluation metrics validate the effectiveness and robustness of our approach.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - 4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs [67.47600679176963]
RDBs store vast amounts of rich, informative data spread across interconnected tables.
The progress of predictive machine learning models falls behind advances in other domains such as computer vision or natural language processing.
We explore a class of baseline models predicated on converting multi-table datasets into graphs.
We assemble a diverse collection of large-scale RDB datasets and (ii) coincident predictive tasks.
arXiv Detail & Related papers (2024-04-28T15:04:54Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - LPNL: Scalable Link Prediction with Large Language Models [46.65436204783482]
This work focuses on the link prediction task and introduces $textbfLPNL$ (Link Prediction via Natural Language), a framework based on large language models.
We design novel prompts for link prediction that articulate graph details in natural language.
We propose a two-stage sampling pipeline to extract crucial information from the graphs, and a divide-and-conquer strategy to control the input tokens.
arXiv Detail & Related papers (2024-01-24T04:50:16Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - Pre-trained Language Model with Prompts for Temporal Knowledge Graph
Completion [30.50032335014021]
We propose a novel TKGC model, namely Pre-trained Language Model with Prompts for TKGC (PPT)
We convert a series of sampled quadruples into pre-trained language model inputs and convert intervals between timestamps into different prompts to make coherent sentences with implicit semantic information.
Our model can effectively incorporate information from temporal knowledge graphs into the language models.
arXiv Detail & Related papers (2023-05-13T12:53:11Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z) - A Generative Approach for Script Event Prediction via Contrastive
Fine-tuning [35.87615178251874]
Script event prediction aims to predict the subsequent event given the context.
Recent works have attempted to improve event correlation reasoning by using pretrained language models and incorporating external knowledge.
We propose a novel generative approach for this task, in which a pretrained language model is fine-tuned with an event-centric pretraining objective.
arXiv Detail & Related papers (2022-12-07T07:32:47Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Turning Tables: Generating Examples from Semi-structured Tables for
Endowing Language Models with Reasoning Skills [32.55545292360155]
We propose to leverage semi-structured tables, and automatically generate at scale question-paragraph pairs.
We add a pre-training step over this synthetic data, which includes examples that require 16 different reasoning skills.
We show that our model, PReasM, substantially outperforms T5, a popular pre-trained encoder-decoder model.
arXiv Detail & Related papers (2021-07-15T11:37:14Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.