論文の概要: Full reference point cloud quality assessment using support vector regression
- arxiv url: http://arxiv.org/abs/2406.10520v1
- Date: Sat, 15 Jun 2024 06:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:02:58.973702
- Title: Full reference point cloud quality assessment using support vector regression
- Title(参考訳): サポートベクトル回帰を用いた全基準点雲質評価
- Authors: Ryosuke Watanabe, Shashank N. Sridhara, Haoran Hong, Eduardo Pavez, Keisuke Nonaka, Tatsuya Kobayashi, Antonio Ortega,
- Abstract要約: 本稿では,サポートベクタ回帰(FRSVR)を用いた完全参照点雲質評価法 (FR-PCQA) を提案する。
提案手法は,これらの5つの単純な測度とSVRの計算のみを含むため,精度と計算速度のトレードオフが優れている。
3種類のオープンデータセットによる実験結果から,提案手法は従来のFR-PCQA法よりも精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 27.462663794942756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are a general format for representing realistic 3D objects in diverse 3D applications. Since point clouds have large data sizes, developing efficient point cloud compression methods is crucial. However, excessive compression leads to various distortions, which deteriorates the point cloud quality perceived by end users. Thus, establishing reliable point cloud quality assessment (PCQA) methods is essential as a benchmark to develop efficient compression methods. This paper presents an accurate full-reference point cloud quality assessment (FR-PCQA) method called full-reference quality assessment using support vector regression (FRSVR) for various types of degradations such as compression distortion, Gaussian noise, and down-sampling. The proposed method demonstrates accurate PCQA by integrating five FR-based metrics covering various types of errors (e.g., considering geometric distortion, color distortion, and point count) using support vector regression (SVR). Moreover, the proposed method achieves a superior trade-off between accuracy and calculation speed because it includes only the calculation of these five simple metrics and SVR, which can perform fast prediction. Experimental results with three types of open datasets show that the proposed method is more accurate than conventional FR-PCQA methods. In addition, the proposed method is faster than state-of-the-art methods that utilize complicated features such as curvature and multi-scale features. Thus, the proposed method provides excellent performance in terms of the accuracy of PCQA and processing speed. Our method is available from https://github.com/STAC-USC/FRSVR-PCQA.
- Abstract(参考訳): ポイントクラウドは、多様な3Dアプリケーションで現実的な3Dオブジェクトを表現する一般的なフォーマットである。
ポイントクラウドはデータサイズが大きいため、効率的なポイントクラウド圧縮手法の開発が不可欠である。
しかし、過剰な圧縮は様々な歪みを引き起こすため、エンドユーザが認識する点雲の品質は低下する。
したがって、効率的な圧縮手法を開発するためのベンチマークとして、信頼性ポイントクラウド品質評価(PCQA)手法の確立が不可欠である。
本稿では, 圧縮歪み, ガウスノイズ, ダウンサンプリングなどの各種劣化に対して, サポートベクター回帰(FRSVR)を用いたフルリファレンス品質評価(FR-PCQA)手法を提案する。
提案手法は, サポートベクトル回帰(SVR)を用いて, 様々な種類の誤差(例えば, 幾何学的歪み, 色歪み, 点数)をカバーする5つのFRベースの測定値を統合することにより, 正確なPCQAを示す。
さらに,提案手法は,これらの5つの単純なメトリクスの計算と,高速な予測が可能なSVRのみを含むため,精度と計算速度のトレードオフが優れている。
3種類のオープンデータセットによる実験結果から,提案手法は従来のFR-PCQA法よりも精度が高いことがわかった。
また,提案手法は,曲率やマルチスケールといった複雑な特徴を利用する最先端手法よりも高速である。
提案手法は,PCQAの精度と処理速度において優れた性能を提供する。
本手法は, https://github.com/STAC-USC/FRSVR-PCQAから利用可能である。
関連論文リスト
- Full-reference Point Cloud Quality Assessment Using Spectral Graph Wavelets [29.126056066012264]
3Dアプリケーションにおけるポイントクラウドは、しばしば、スキャンや圧縮などの処理中に品質劣化を経験する。
本稿ではスペクトルグラフウェーブレット(SGW)を用いた全参照(FR)PCQA法を提案する。
我々の知る限り、PCQA向けのSGWを紹介する最初の研究である。
論文 参考訳(メタデータ) (2024-06-14T06:59:54Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
与えられた3D-PCの非参照品質指標を提案する。
入力属性を品質スコアにマップするには、Deformable Convolutional Network(DCN)とViT(ViT)を組み合わせた軽量ハイブリッドディープモデルを用いる。
その結果,本手法は現在のNR-PCQA測度やPointXRのFR-PCQAよりも優れていた。
論文 参考訳(メタデータ) (2023-12-10T19:13:34Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
投影型ポイントクラウド品質評価(PCQA)のための簡易ベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
論文 参考訳(メタデータ) (2023-10-26T04:42:57Z) - GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality
Assessment [82.93561866101604]
従来のプロジェクションに基づく3DQA手法は,複数プロジェクションから特徴を直接抽出して品質予測精度を確保する。
我々は,Non-Reference (NR) projection-based textitunderlineGrid underlineMini-patch underlineSampling underline3D Model underlineQuality underlineAssessment (GMS-3DQA)法を提案する。
提案されたGMS-3DQAは、他の3Dよりもはるかに少ない計算資源と推論時間を必要とする
論文 参考訳(メタデータ) (2023-06-09T03:53:12Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
我々は、任意のアップサンプリングレートをサポートする、正確なポイントクラウドアップサンプリングのための新しいフレームワークを提案する。
提案手法は,まず,所定のアップサンプリング率に応じて低解像度の雲を補間する。
論文 参考訳(メタデータ) (2023-04-24T06:36:35Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
本研究では,3次元点雲登録のための高精度,効率的,物理的に誘導された手法を提案する。
我々は、粒子(点)の動きを制御し、より正確で頑健な登録を実現するために、幾何学を意識した剛体力学を探求する。
その結果,提案手法は精度において最先端の手法よりも優れており,大規模点雲の登録に適していることがわかった。
論文 参考訳(メタデータ) (2023-02-02T14:06:46Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
客観的クラウド品質評価(PCQA)研究の目標は、ポイントクラウド品質を一貫した方法で測定するメトリクスを開発することである。
歪んだ点雲を基準に戻す複雑さを計測することで点雲の質を評価する。
提案手法の有効性を,5つのパブリッククラウド品質評価データベース上で行った広範囲な実験を通じて評価した。
論文 参考訳(メタデータ) (2022-10-10T13:20:51Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
本稿では,ビデオ品質評価(VQA)手法を用いて,ポイントクラウド品質評価(PCQA)タスクの処理方法について検討する。
捉えたビデオは、いくつかの円形の経路を通して、点雲の周りでカメラを回転させて生成する。
トレーニング可能な2D-CNNモデルと事前学習された3D-CNNモデルを用いて、選択したキーフレームとビデオクリップから空間的・時間的品質認識特徴を抽出する。
論文 参考訳(メタデータ) (2022-08-30T08:59:41Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
レート歪み最適化では、ビットレートの制約を受ける再構成品質尺度を最大化してエンコーダ設定を決定する。
本稿では,V-PCC幾何および色量化パラメータを変数とする線形知覚品質モデルを提案する。
400個の圧縮された3D点雲による主観的品質試験の結果,提案モデルが平均評価値とよく相関していることが示唆された。
また、同じ目標ビットレートに対して、提案モデルに基づくレート歪みの最適化は、ポイント・ツー・ポイントの客観的な品質指標による徹底的な探索に基づくレート歪みの最適化よりも高い知覚品質を提供することを示した。
論文 参考訳(メタデータ) (2020-11-25T12:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。